研究生: |
王素如 Wang, Su-Ju |
---|---|
論文名稱: |
Isotope effects in vibration theory of olfaction |
指導教授: |
林秀豪
Lin, Hsiu-Hau |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 54 |
中文關鍵詞: | 氣味分子 、嗅覺受器 、振動理論 、形狀理論 、聲子輔助穿遂 、同位素效應 |
外文關鍵詞: | odors, odorant receptors, Vibration theory, Shape theory, Phonon-assisted tunneling, Isotope effects |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The dominating theory of olfaction is the shape theory which is based on the key-lock model. However, experiments have shown that matching of shape and size with odorant receptors are still insufficient to explain the mechanism of how human noses work. The strongest evidence is the isotope experiments. With the inelastic tunneling mechanism proposed by Luca Turin in 1996, we first study the vibration theory based on the phonon-assisted tunneling mechanism, and calculate tunneling rate using Fermi's golden rule. Then, we develop our algorithm to plot molecular spectra of vibration with y axis labeling the odors' coupling strength with odorant receptors. With these spectra, we can predict the existence of isotope effects of any kind of molecules, and provide more direct suggestions to experiments. All make a further step to the humans' understanding toward the ultimate theory of olfaction.
[1] J. C. Brookes, F. Hartoutsiou, A. P. Horsfield and A.M. Stoneham, Phys. Rev. Lett. 98, 38101 (2007).
[2] L. Pauling, Chemical and Engineering News 24,137(1946).
[3] R. W. Moncrieff, Am. Perfumer, 54, 453 (1949).
[4] R. W. Moncrieff, Perfumery Essential Oil Record, 40, 279 (1949).
[5] J. E. Amoore, Perfumery Essential Oil Record, 43, 321 (1952)
[6] J. E. Amoore, Nature, 198, 271 (1963)
[7] J. E. Amoore, Nature, 199, 912 (1963)
[8] L. B. Buck and R. Axel, Cell 65, 175 (1991).
[9] B. Malnic, J. Hirono, T. Sato and L. B. Buck, Cell, 96, 713 (1999).
[10] We are grateful to the National Center for High-performance Computing for computer time and facilities.
[11] L. J. W. Haffenden, V. A. Yaylayan and J. Fortin, Food Chem. 73, 67 (2001).
[12] S. C. Roberts, Chem. Senses 31, E74 (2006).
[13] A. Keller and L. B. Vosshall, Nature Neurosience 7, 337 (2004).
[14] S. Firestein, Nature 413, 211 (2001).
[15] G. M. Dyson, Chem. Ind. 57, 647 (1938).
[16] L. Turin, Chem. Senses 21, 773 (1996).
[17] J. B. Foresman and A. Frisch, Exploring Chemistry with electronic structure methods, Second Edition, (1993).
[18] L. Turin, J. Theor. Bio. 216, 367 (2002).
[19] R. H. Wright, J. Theor. Biol. 64, 473 (1977).
[20] The Fermi-golden-rule formula here means that it is an exact formula of tunneling rate from Fermi’s golden rule in our harmonic model (the lowest-order perturbation theory). Obviously, it is not the ultimate exact formula of tunneling rate. If we would like to reach the higher-order accuracy, we may turn to the generalized Fermi’s golden rule (T-matrix method) or we may consider the model beyond the harmonic approximation.
[21] R. A. Marcus, J. Chem. Phys. 43(2), 679 (1965).
[22] C. C. Moser, J. M. Deske, K. Warncke, R. S. Farid, and P. L. Dutton, Nature, 355, 796 (1992)
[23] Yiwei J. et al., J. Phys. Chem. 97, 13180 (1993).
[24] J. Jortner, J. Chem. Phys. 64(12), 4860 (1976)
[25] X. Song and A. A. Stuchebrukhov, J. Chem. Phys. 99(2), 969 (2006).
[26] R. Fiederling et al., Nature(London) 402, 787(1999).