簡易檢索 / 詳目顯示

研究生: 王素如
Wang, Su-Ju
論文名稱: Isotope effects in vibration theory of olfaction
指導教授: 林秀豪
Lin, Hsiu-Hau
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 54
中文關鍵詞: 氣味分子嗅覺受器振動理論形狀理論聲子輔助穿遂同位素效應
外文關鍵詞: odors, odorant receptors, Vibration theory, Shape theory, Phonon-assisted tunneling, Isotope effects
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The dominating theory of olfaction is the shape theory which is based on the key-lock model. However, experiments have shown that matching of shape and size with odorant receptors are still insufficient to explain the mechanism of how human noses work. The strongest evidence is the isotope experiments. With the inelastic tunneling mechanism proposed by Luca Turin in 1996, we first study the vibration theory based on the phonon-assisted tunneling mechanism, and calculate tunneling rate using Fermi's golden rule. Then, we develop our algorithm to plot molecular spectra of vibration with y axis labeling the odors' coupling strength with odorant receptors. With these spectra, we can predict the existence of isotope effects of any kind of molecules, and provide more direct suggestions to experiments. All make a further step to the humans' understanding toward the ultimate theory of olfaction.


    Abstract 1 Acknowledgment 2 Contents 3 1 Introduction 5 2 The microscopic model for vibration theory of olfaction 9 2.1 Constructing the model . . . . . . . . . . . . . . 10 2.2 Tunneling rate . . . . . . . . . . . . . . .. . . . 12 2.3 Results from tunneling rate . . . . . . . . . . . . 17 2.4 Reformulation of Tunneling rate . . . . . . . . . . 19 3 Tunneling rates in different limits 21 3.1 Marcus formula . . . . . . . . . . . . . . . . . . . 21 3.2 Levich-Dogoadze-Jortner formula . . . . . . . . . . 23 3.3 Comparisons of tunneling rates in different limits . 25 4 Vibration spectra by Gaussian 27 4.1 Preparing the input files . . . . . . . . . . . . . 27 4.2Optimization . . . . . . . . . . . . . . . . . . . . .28 4.3 Partial charges . . . . . . . . . . . . . . . . . . 29 4.4 Vibrational frequencies and reduced masses . . . . . 29 4.5 Infrared spectra . . . . . . . . . . . . . . . . . . 31 5 Isotope effects 33 5.1 Effective coupling strength . . . . . . . . . . . . 34 5.2 Inelastic tunneling rates spectra . . . . . . . . . 37 5.2.1 Fixed-direction docking . . . . . . . . . . . . . 38 5.2.2 Average effects in the directions of docking . . . 40 5.2.3 Nonuniform electric field method . . . . . . . . . 42 5.3 Comparison with Marcus formula . . . . . . . . . . . 43 6 Conclusions and Outlook 47 A Proof of formula (2.25) 49

    [1] J. C. Brookes, F. Hartoutsiou, A. P. Horsfield and A.M. Stoneham, Phys. Rev. Lett. 98, 38101 (2007).
    [2] L. Pauling, Chemical and Engineering News 24,137(1946).
    [3] R. W. Moncrieff, Am. Perfumer, 54, 453 (1949).
    [4] R. W. Moncrieff, Perfumery Essential Oil Record, 40, 279 (1949).
    [5] J. E. Amoore, Perfumery Essential Oil Record, 43, 321 (1952)
    [6] J. E. Amoore, Nature, 198, 271 (1963)
    [7] J. E. Amoore, Nature, 199, 912 (1963)
    [8] L. B. Buck and R. Axel, Cell 65, 175 (1991).
    [9] B. Malnic, J. Hirono, T. Sato and L. B. Buck, Cell, 96, 713 (1999).
    [10] We are grateful to the National Center for High-performance Computing for computer time and facilities.
    [11] L. J. W. Haffenden, V. A. Yaylayan and J. Fortin, Food Chem. 73, 67 (2001).
    [12] S. C. Roberts, Chem. Senses 31, E74 (2006).
    [13] A. Keller and L. B. Vosshall, Nature Neurosience 7, 337 (2004).
    [14] S. Firestein, Nature 413, 211 (2001).
    [15] G. M. Dyson, Chem. Ind. 57, 647 (1938).
    [16] L. Turin, Chem. Senses 21, 773 (1996).
    [17] J. B. Foresman and A. Frisch, Exploring Chemistry with electronic structure methods, Second Edition, (1993).
    [18] L. Turin, J. Theor. Bio. 216, 367 (2002).
    [19] R. H. Wright, J. Theor. Biol. 64, 473 (1977).
    [20] The Fermi-golden-rule formula here means that it is an exact formula of tunneling rate from Fermi’s golden rule in our harmonic model (the lowest-order perturbation theory). Obviously, it is not the ultimate exact formula of tunneling rate. If we would like to reach the higher-order accuracy, we may turn to the generalized Fermi’s golden rule (T-matrix method) or we may consider the model beyond the harmonic approximation.
    [21] R. A. Marcus, J. Chem. Phys. 43(2), 679 (1965).
    [22] C. C. Moser, J. M. Deske, K. Warncke, R. S. Farid, and P. L. Dutton, Nature, 355, 796 (1992)
    [23] Yiwei J. et al., J. Phys. Chem. 97, 13180 (1993).
    [24] J. Jortner, J. Chem. Phys. 64(12), 4860 (1976)
    [25] X. Song and A. A. Stuchebrukhov, J. Chem. Phys. 99(2), 969 (2006).
    [26] R. Fiederling et al., Nature(London) 402, 787(1999).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE