研究生: |
吳季蓁 Wu, Chi-Chen |
---|---|
論文名稱: |
轉爐石作為非均相觸媒應用於廢食用油轉酯化反應之探討 Transesterification of Waste Cooking Oil to Biodiesel Using Basic Oxygen Furnace Slag as a Heterogeneous Base Catalyst |
指導教授: |
凌永健
Ling, Yong-Chien |
口試委員: |
饒達仁
Yao, Da-Jeng 杜敬民 Du, Jing-Min 張家耀 Chang, Jia-Yaw |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 轉爐石 、廢食用油 、轉酯化反應 、生質柴油 |
外文關鍵詞: | BOF Slag, Waste Cooking Oil, Transesterification, Biodiesel |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
生質柴油是利用各種植物油脂或動物油脂做為生產原料,經轉酯化反應所產生的生質燃料,具生物可分解性、無毒、燃燒後污染性低等優點。轉爐石是煉鋼過程中產出之副產物,台灣每年約有120萬噸之多,但因煉鋼過程會添加石灰石當作助熔劑,導致其中含有大量的氧化鈣,置於水中呈強鹼性,若隨意傾倒容易污染土質與水源。近年來,政府致力於轉爐石的循環利用,主要是將處理過後的轉爐石應用於道路鋪面。本研究旨在擴展轉爐石的應用層面,以提升其價值。
轉爐石的強鹼特性非常適合作為生質柴油的轉酯化觸媒。因此,本實驗首先以XRF、TOF-SIMS與MP-AES分析轉爐石中的金屬組成比例,並確認氧化鈣是其中主要進行催化的金屬氧化物。接下來使用TGA來評估轉爐石適合的鍛燒溫度以及使用SEM觀測鍛燒前後轉爐石的變化。實驗首先以轉爐石與甲醇反應轉酯大豆油,並使用田口實驗優化探討轉酯化反應時間、油醇莫耳比、轉爐石添加量與反應溫度等實驗條件,以達到較高的轉酯化效率。在優化條件下,轉爐石的前處理,需經過約4小時、750℃的鍛燒以活化觸媒,轉酯化反應則需以油醇莫爾比1:6、溫度80℃、反應時間6小時、觸媒比例15%以及水含量0.1%轉酯化廢食用油,可獲得與大豆油轉酯化相似的結果,轉酯化效率均落在70%左右,且無明顯皂化現象產生。
Biodiesel is a biofuel produced by transesterification using various vegetable or animal fats as raw materials. It has the advantages of biodegradability, non-toxicity, and low pollution after combustion. Basic Oxygen Furnace (BOF) slag is a by-product produced in the steel making process. Limestone is added as a flux during the steel making process, resulting in BOF slag being an alkaline solid.
The strong alkaline characteristic of BOF slag is very suitable as a transesterification catalyst for biodiesel. This study first analyzed the metal composition in BOF slag by XRF, TOF-SIMS, and MP-AES. The results confirmed that the calcium oxide was the main catalyst. Next, BOF slag was used to catalyze the transesterification of methanol and soybean oil. Taguchi method was applied to obtain the optimal experimental conditions for the transesterification reaction. The results showed that the pretreatment of BOF slag required calcination at 750℃ for 4 hours. Moreover, the best experimental parameters of the transesterification in this study were: oil methanol ratio at 6, reaction temperature at 80℃, 6 hours reaction time, catalyst ratio of 15%, and water content of 0.1%. Applying this result to the transesterification of waste cooking oil, the transesterification efficiency was around 70%, and no significant saponification occurred.
(1) Ziejewski, M.; Kaufman, K. R.; Schwab, A. W.; Pryde, E. H. Diesel Engine Evaluation of a Nonionic Sunflower Oil-Aqueous Ethanol Microemulsion. J. Am. Oil Chem. Soc. 1984, 61 (10), 1620–1626.
(2) Lin, C. Y.; Lin, H. A.; Hung, L. B. Fuel Structure and Properties of Biodiesel Produced by the Peroxidation Process. Fuel 2006, 85 (12–13), 1743–1749.
(3) Dorado, M. P.; Ballesteros, E.; Arnal, J. M.; Gómez, J.; López, F. J. Exhaust Emissions from a Diesel Engine Fueled with Transesterified Waste Olive Oil. Fuel 2003, 82 (11), 1311–1315.
(4) Lee, D. W.; Park, Y. M.; Lee, K. Y. Heterogeneous Base Catalysts for Transesterification in Biodiesel Synthesis. Catal. Surv. from Asia 2009, 13 (2), 63–77.
(5) Zhang, Y.; Dubé, M. A.; McLean, D. D.; Kates, M. Biodiesel Production from Waste Cooking Oil: 2. Economic Assessment and Sensitivity Analysis. Bioresour. Technol. 2003, 90 (3), 229–240.
(6) Stahel, W. R. The Circular Economy. Nature 2016, 531 (7595), 435–438.
(7) 蔡柏棋、徐登科,「台灣常用爐石與工程應用實務」,台灣省土木技師公會,2014。
(8) 陳信榮、張簡國禎,「轉爐石對環境相容性之探討」,轉爐石應用於瀝青混凝土鋪面研討會論文集,第1-9頁,2011。
(9) 許伯良、林平全、徐登科,「轉爐石產製與工程應用」,轉爐石應用於瀝青混凝土鋪面研討會論文集,第10-18頁,2011。
(10) Demirbas, A. Biodiesel Production from Vegetable Oils via Catalytic and Non-Catalytic Supercritical Methanol Transesterification Methods. Prog. Energy Combust. Sci. 2005, 31 (5–6), 466–487.
(11) Knothe, G.; Krahl, J.; Van Gerpen, J. H. The Biodiesel Handbook; AOCS Press, 2010.
(12) Moser, B. R.; Vaughn, S. F. Evaluation of Alkyl Esters from Camelina Sativa Oil as Biodiesel and as Blend Components in Ultra Low-Sulfur Diesel Fuel. Bioresour. Technol. 2010, 101 (2), 646–653.
(13) Marchetti, J. M.; Miguel, V. U.; Errazu, A. F. Possible Methods for Biodiesel Production. Renew. Sustain. Energy Rev. 2007, 11 (6), 1300–1311.
(14) Candeia, R. A.; Silva, M. C. D.; Carvalho Filho, J. R.; Brasilino, M. G. A.; Bicudo, T. C.; Santos, I. M. G.; Souza, A. G. Influence of Soybean Biodiesel Content on Basic Properties of Biodiesel–Diesel Blends. Fuel 2009, 88 (4), 738–743.
(15) Ma, F.; Hanna, M. A. Biodiesel Production: A Review. Bioresour. Technol. 1999, 70 (1), 1–15.
(16) Harwood, H. J. Oleochemicals as a Fuel: Mechanical and Economic Feasibility. J. Am. Oil Chem. Soc. 1984, 61 (2), 315–324.
(17) Ziejewski, M.; Kaufman, K. R.; Schwab, A. W.; Pryde, E. H. Diesel Engine Evaluation of a Nonionic Sunflower Oil-Aqueous Ethanol Microemulsion. J. Am. Oil Chem. Soc. 1984, 61 (10), 1620–1626.
(18) Pioch, D.; Lozano, P.; Rasoanantoandro, M. C.; Graille, J.; Geneste, P.; Guida, A. Biofuels from Catalytic Cracking of Tropical Vegetable Oils. Oleagineux 1993, 48 (6), 289–291.
(19) Leung, D. Y. C.; Wu, X.; Leung, M. K. H. A Review on Biodiesel Production Using Catalyzed Transesterification. Appl. Energy 2010, 87 (4), 1083–1095.
(20) Kiss, A. A.; Dimian, A. C.; Rothenberg, G. Solid Acid Catalysts for Biodiesel Production – Towards Sustainable Energy. Adv. Synth. Catal. 2006, 348 (1–2), 75–81.
(21) Canakci, M.; Van Gerpen, J. Biodiesel Production from Oils and Fats with High Free Fatty Acids. Trans. ASAE 2001, 44 (6), 1429–1436.
(22) Ranganathan, S. V.; Narasimhan, S. L.; Muthukumar, K. An Overview of Enzymatic Production of Biodiesel. Bioresour. Technol. 2008, 99 (10), 3975–3981.
(23) Aragão Börner, R.; Zaushitsyna, O.; Berillo, D.; Scaccia, N.; Mattiasson, B.; Kirsebom, H. Immobilization of Clostridium Acetobutylicum DSM 792 as Macroporous Aggregates through Cryogelation for Butanol Production. Process Biochem. 2014, 49 (1), 10–18.
(24) Zhang, Y.; Dubé, M. A.; McLean, D. D.; Kates, M. Biodiesel Production from Waste Cooking Oil: 1. Process Design and Technological Assessment. Bioresour. Technol. 2003, 89 (1), 1–16.
(25) Zabeti, M.; Wan Daud, W. M. A.; Aroua, M. K. Activity of Solid Catalysts for Biodiesel Production: A Review. Fuel Process. Technol. 2009, 90 (6), 770–777.
(26) Chorkendorff, I.; Niemantsverdriet, J. W. Concepts of Modern Catalysis and Kinetics; Wiley, 2003.
(27) Kwong, T. L.; Yung, K. F. Heterogeneous Alkaline Earth Metal-Transition Metal Bimetallic Catalysts for Synthesis of Biodiesel from Low Grade Unrefined Feedstock. RSC Adv. 2015, 5 (102), 83748–83756.
(28) Gryglewicz, S. Rapeseed Oil Methyl Esters Preparation Using Heterogeneous Catalysts. Bioresour. Technol. 1999, 70 (3), 249–253.
(29) D’Cruz, A.; Kulkarni, M. G.; Meher, L. C.; Dalai, A. K. Synthesis of Biodiesel from Canola Oil Using Heterogeneous Base Catalyst. J. Am. Oil Chem. Soc. 2007, 84 (10), 937–943.
(30) Liu, X.; He, H.; Wang, Y.; Zhu, S. Transesterification of Soybean Oil to Biodiesel Using SrO as a Solid Base Catalyst. Catal. Commun. 2007, 8 (7), 1107–1111.
(31) Wang, L.; Yang, J. Transesterification of Soybean Oil with Nano-MgO or Not in Supercritical and Subcritical Methanol. Fuel 2007, 86 (3), 328–333.
(32) Hattori, H. Heterogeneous Basic Catalysis. Chem. Rev. 1995, 95 (3), 537–558.
(33) Jensen, M. B.; Pettersson, L. G. M.; Swang, O.; Olsbye, U. CO2 Sorption on MgO and CaO Surfaces: A Comparative Quantum Chemical Cluster Study. J. Phys. Chem. B 2005, 109 (35), 16774–16781.
(34) Granados, M. L.; Poves, M. D. Z.; Alonso, D. M.; Mariscal, R.; Galisteo, F. C.; Moreno-Tost, R.; Santamaría, J.; Fierro, J. L. G. Biodiesel from Sunflower Oil by Using Activated Calcium Oxide. Appl. Catal. B Environ. 2007, 73 (3–4), 317–326.
(35) Liu, X.; He, H.; Wang, Y.; Zhu, S.; Piao, X. Transesterification of Soybean Oil to Biodiesel Using CaO as a Solid Base Catalyst. Fuel 2008, 87 (2), 216–221.
(36) Granados, M. L.; Alonso, D. M.; Sádaba, I.; Mariscal, R.; Ocón, P. Leaching and Homogeneous Contribution in Liquid Phase Reaction Catalysed by Solids: The Case of Triglycerides Methanolysis Using CaO. Appl. Catal. B Environ. 2009, 89 (1–2), 265–272.
(37) Kouzu, M.; Yamanaka, S.; Hidaka, J.; Tsunomori, M. Heterogeneous Catalysis of Calcium Oxide Used for Transesterification of Soybean Oil with Refluxing Methanol. Appl. Catal. A Gen. 2009, 355 (1–2), 94–99.
(38) Kwong, T. L.; Yung, K. F. Heterogeneous Alkaline Earth Metal–Transition Metal Bimetallic Catalysts for Synthesis of Biodiesel from Low Grade Unrefined Feedstock. RSC Adv. 2015, 5 (102), 83748–83756.
(39) Gazmuri, A. M.; Bouchon, P. Analysis of Wheat Gluten and Starch Matrices during Deep-Fat Frying. Food Chem. 2009, 115 (3), 999–1005.
(40) Corsaro, A.; Chiacchio, U.; Pistarà, V.; Romeo, G. Microwave-Assisted Chemistry of Carbohydrates; 2004; Vol. 8.
(41) Cvengroš, J.; Cvengrošová, Z. Used Frying Oils and Fats and Their Utilization in the Production of Methyl Esters of Higher Fatty Acids. Biomass and Bioenergy 2004, 27 (2), 173–181.
(42) Knothe, G.; Gerpen, J. Van; Krahl, J. The Biodiesel Handbook; 2005.
(43) 沈得縣、李承効,「轉爐石應用於瀝青混凝土鋪面使用手冊及注意事項」,2011。
(44) Ding, Y.-C.; Cheng, T.-W.; Liu, P.-C.; Lee, W.-H. Study on the Treatment of BOF Slag to Replace Fine Aggregate in Concrete. Constr. Build. Mater. 2017, 146, 644–651.
(45) 中國鋼鐵股份有限公司、中龍鋼鐵股份有限公司、中聯資源股份有限公司,「滾筒轉爐石及改質轉爐石鋪面磚使用手冊」,2018。
(46) 李育成、楊金成、蔡立文、俞明塗,「轉爐碴改質技術在中鋼之應用與突破」,中國鑛冶工程學會會刊,第五十八卷 第四期,第23-32頁,2014。
(47) 中聯資源股份有限公司 https://www.chc.com.tw/ (accessed Jan 17, 2020).
(48) 國家標準(CNS)網路服務系統
https://www.cnsonline.com.tw/?locale=zh_TW (accessed Nov 19, 2019).
(49) 林宗曾、陳威宇、張益國、施百鴻、呂東璇、張祖恩,鹼活化水泥砂漿添加轉爐石細料之性質研究,化工,第六十五卷 第四期,第2- 6頁,2018。
(50) Hu, E.; He, Z.; Nan, X.; Yuan, Z.; Li, X. Removal of Phenanthrene and Pyrene from Contaminated Sandy Soil Using Hydrogen Peroxide Oxidation Catalyzed by Basic Oxygen Furnace Slag. Environ. Sci. Pollut. Res. 2019, 26 (9), 9281–9292.
(51) Cheng, M.; Zeng, G.; Huang, D.; Lai, C.; Liu, Y.; Xu, P.; Zhang, C.; Wan, J.; Hu, L.; Xiong, W.; et al. Salicylic Acid–Methanol Modified Steel Converter Slag as Heterogeneous Fenton-like Catalyst for Enhanced Degradation of Alachlor. Chem. Eng. J. 2017, 327, 686–693.
(52) Zameer Hussain, S.; Maqbool, K. GC-MS: Principle, Technique and Its Application in Food Science. INT J CURR SCI 2014, 13, 116–126.
(53) Honour, J. W. Benchtop Mass Spectrometry in Clinical Biochemistry. Ann. Clin. Biochem. 2003, 40 (6), 628–638.
(54) Karlsson, S.; Sjöberg, V.; Ogar, A. Comparison of MP AES and ICP-MS for Analysis of Principal and Selected Trace Elements in Nitric Acid Digests of Sunflower (Helianthus Annuus). Talanta 2015, 135, 124–132.
(55) Vickerman, J. C.; Briggs, D. TOF-SIMS : Materials Analysis by Mass Spectrometry; IM Publications LLP: UK, 2013.
(56) 徐佩吟,氣相層析質譜法於食用油指紋(脂肪酸、植物固醇)之建立與成分鑑定,國立清華大學碩士論文,2016。
(57) Wang, D.; Jiang, M.; Liu, C.; Min, Y.; Cui, Y.; Liu, J.; Zhang, Y. Enrichment of Fe-Containing Phases and Recovery of Iron and Its Oxides by Magnetic Separation from BOF Slags. steel Res. Int. 2012, 83 (2), 189–196.
(58) Xue, Y.; Wu, S.; Hou, H.; Zha, J. Experimental Investigation of Basic Oxygen Furnace Slag Used as Aggregate in Asphalt Mixture. J. Hazard. Mater. 2006, 138 (2), 261–268.
(59) López Granados, M.; Martín Alonso, D.; Alba-Rubio, A. C.; Mariscal, R.; Ojeda, M.; Brettes, P. Transesterification of Triglycerides by CaO: Increase of the Reaction Rate by Biodiesel Addition. Energy & Fuels 2009, 23 (4), 2259–2263.
(60) 柯明賢、呂雅湘、吳孟樺等,「鋼鐵工業爐渣作為填築材料之工程特性與環境特性研究」,鋼鐵工業爐渣資源化再利用實務研討會,2002。
(61) Fang, Y. R.; Yeh, Y.; Liu, H. S. A Novel Strategy of Biodiesel Production from Wet Microalgae by Direct Saponification–Esterification Conversion (DSEC). J. Taiwan Inst. Chem. Eng. 2018, 83, 23–31.
(62) 清除處理機構服務管理資訊系統 https://wcds.epa.gov.tw/WCDS/ (accessed Dec 20, 2019).
(63) Huang, Y. F.; Lee, Y. T.; Chiueh, P. T.; Lo, S. L. Microwave Calcination of Waste Oyster Shells for CO2 Capture. Energy Procedia 2018, 152, 1242–1247.
(64) Mascotto, S.; Tsetsgee, O.; Müller, K.; MacCato, C.; Smarsly, B.; Brandhuber, D.; Tondello, E.; Gross, S. Effect of Microwave Assisted and Conventional Thermal Heating on the Evolution of Nanostructured Inorganic-Organic Hybrid Materials to Binary ZrO2-SiO2 Oxides. J. Mater. Chem. 2007, 17 (41), 4387–4399.