簡易檢索 / 詳目顯示

研究生: 李侑道
Yu-Tao Lee
論文名稱: 刺激群之間的間隔長度對於果蠅幼蟲神經肌肉聯會系統的突觸連結強度所造成的影響
Interval between burst of stimuli modulate synaptic plasticity in neuromuscular junction of Drosophila melanogaster larvae
指導教授: 葉世榮
Shih-Rung Yeh
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 34
中文關鍵詞: 果蠅神經肌肉聯會突觸連結強度刺激群間隔
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 於不同層次的神經系統的實驗指出,改變刺激和刺激間的間隔長度會對神經系統產生影響,如學習能力的改變,或是應激性(excitability),但對於突觸的連結強度是否會產生影響,以及是透過什麼樣的機制來感測到不同的刺激和刺激間的間隔,仍不是十分清楚。本文以果蠅三齡幼蟲的神經-肌肉聯會(neuromuscular junction)作為研究系統,改變burst之間的間隔長度inter-burst interval (IBI),來探討不同IBI的tetanus對於突觸連結強度所產生的影響。當生理食鹽水中的鈣離子濃度為0.2mM,給予IBI為0和3.25秒的tetanus後,Evoked junctional potential (EJP)的高度受到長時間的抑制;但當IBI的長度為1.25秒(介於0和3.25秒之間時),EJP的高度反而沒受到抑制。改變tetanus的時間長度或burst的數目,並不會改變具有不同IBI的tetanus對於突觸連結強度所產生的影響。將生理食鹽水中的鈣離子濃度由0.2mM改成0.4mM後,IBI為3.25秒的刺激並不會抑制EJP的高度;相對於3.25秒,IBI為1.25秒的刺激反而會抑制EJP的高度。鈣離子濃度的增加似乎影響了IBI和不同突觸連結強度的形式之間的關係。給予cAMP cascade受到抑制的突變種rut2080不同長度的IBI tetanus,發現當鈣離子濃度為0.2mM時,IBI為3.25秒的抑制情形消失。除了長時間突觸連結強度的變化,不同IBI的刺激對於tetanus中短時間的突觸連結強度也會造成不同的影響。這些結果顯示,tetanus中IBI的長短對於NMJ的突觸連結強度是一個重要的因子,對於長時間或短時間的突觸連結強度變化都會產生影響。這些影響可能是透過鈣離子或是cAMP cascade的分子路徑來傳遞。


    Experiments at different levels of neuronal system have shown that the interval between stimuli can affect neuronal system, for example, learning performance or neuronal excitability. However, the effect of different interval between stimuli is not clear in synaptic level. In the present study, we have used the neuromuscular junction (NMJ) of Drosophila third instar larvae and changed the interval between bursts to explore the role of inter-burst interval (IBI) in synaptic plasticity. When calcium concentration in buffer is 0.2mM, the amplitude of evoked junctional potential (EJP ) is suppressed after giving tetanus stimuli with IBI = 0 or 3.25 sec. When IBI is 1.25 sec, between 0 sec and 3.25 sec, the amplitude of EJP is not depressed after tetanus. The effects of different IBI on the synaptic plasticity are the same when the length of tetanus or the number of bursts is changed. Changing the calcium concentration in buffer from 0.2mM to 0.4mM affects the interval tuning at synaptic plasticity. At [Ca2+] = 0.4 mM, tetanus with IBI = 3.25 sec has no depression effect on EJP amplitude, but IBI = 1.25 sec suppresses EJP amplitude after tetanus. We have used rut2080, a mutant with reduced cAMP, to investigate the role of cAMP cascade in IBI tuning synaptic plasticity. At [Ca2+] = 0.2 mM, the suppressed effect on EJP amplitude when giving tetanus with IBI = 3.25 sec disappears. Besides the long term effect of synaptic plasticity, different IBI also affects the synaptic plasticity during tetanus. Thus, these results show that the length of IBI might be an important factor affecting synaptic plasticity at NMJ, and NMJ might discriminate different IBI through Ca2+ and cAMP cascade.

    Abstract..........................................................................................................................1 摘要...............................................................................................................................2 誌謝...............................................................................................................................3 緒論...............................................................................................................................5 材料與方法...................................................................................................................8 結果.............................................................................................................................11 □ 不同的inter-burst interval (IBI) 於NMJ造成不同的突觸連結強度變化...11 □ Inter-burst interval決定NMJ long term plasticity的型態...............................12 □ IBI和外部Ca2+濃度的關係……………….....................................................13 □ Inter-burst interval影響了tetanus中的short term synaptic plasticity............14 □ cAMP cascade和不同IBI所引起的突觸連結強度變化................................14 討論.............................................................................................................................16 插圖與說明.................................................................................................................20 參考文獻.....................................................................................................................30

    Ajay SM, Bhalla US. 2004. A role for ERKII in synaptic pattern selectivity on the time-scale of minutes. European Journal of Neuroscience 20: 2671-2680.
    Atwood H, Govind C, Wu C. 1993. Differential ultrastructure of synaptic terminals on ventral longitudinal abdominal muscles in drosophila larvae. J Neurobiol 24: 1008-1024.
    Berridge MJ. 1998. Neuronal calcium signaling. Neuron 21: 13-26.
    Birmingham JT, Szuts ZB, Abbott LF, Marder E. 1999. Encoding of muscle movement on two time scales by a sensory neuron that switches between spiking and bursting modes. Journal of Neurophysiology 82: 2786-2797.
    Bliss TVP, Collingridge GL. 1993. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361: 31-39.
    Chi Z, Margoliash D. 2001. Temporal precision and temporal drift in brain and behavior of zebra finch song. Neuron 32: 899-910.
    Davis G, DiAntonio A, Petersen S, Goodman C. 1998. Postsynaptic PKA controls quantal size and reveals a retrograde signal that regulates presynaptic transmitter release in Drosophila. Neuron 20: 305-315.
    Duerr J, Quinn W. 1982. Three Drosophila mutations that block associative learning also affect habituation and sensitization. Proceedings of the National Academy of Sciences 79: 3646-3650.
    FENG Y, UEDA A, WU C. 2004. A modified minimal hemolymph-like solution, HL3. 1, for physiological recordings at the neuromuscular junctions of normal and mutant Drosophila larvae. Journal of Neurogenetics 18: 377-402.
    Fields RD, Eshete F, Dudek S, Ozsarac N, Stevens B. 2001. Regulation of gene expression by action potentials: dependence on complexity in cellular information processing. Novartis Found Symp 239: 160-172.
    Guo HF, Zhong Y. 2006. Requirement of Akt to mediate long-term synaptic depression in Drosophila. Journal of Neuroscience 26: 4004-4014.
    Hooper J. 1986. Homeotic gene function in the muscles of Drosophila larvae. EMBO J 5: 2321-2329.
    Huang YZ, Edwards M, Rounis E, Bhatia K, Rothwell J. 2005. Theta burst stimulation of the human motor cortex. Neuron 45: 201-206.
    Keshishian H, Broadie K, Chiba A, Bate M. 1996. The Drosophila neuromuscular junction: a model system for studying synaptic development and function. Annual Review of Neuroscience 19: 545-575.
    Keshishian H, Chiba A. 1993. Neuromuscular development in drosophila: insights from single neurons and single genes. Trends Neurosci 16: 278-283.
    Kurdyak P, Atwood H, Stewart B, Wu C. 1994. Differential physiology and morphology of motor axons to ventral longitudinal muscles in larval Drosophila. The Journal of Comparative Neurology 350: 463-472.
    Lattal K. 1999. Trial and intertrial durations in pavlovian conditioning: issues of learning and performance. Journal of Experimental Psychology: Animal Behavior Processes 25: 433-450.
    Levin L, Han P, Hwang P, Feinstein P, Davis R, Reed R. 1992. The Drosophila learning and memory gene rutabaga encodes a Ca2+/calmodulin-responsive adenylyl cyclase. Cell 68: 479-489.
    Lnenicka G, Keshishian H. 2000. Identified motor terminals in Drosophila larvae show distinct differences in morphology and physiology. Journal of Neurobiology 43: 186.
    Martin S, Grimwood P, Morris R. 2000. Synaptic plasticity and memory: an evaluation of the hypothesis. Annual Review of Neuroscience 23: 649-711.
    Morris L, Hooper S. 1997. Muscle response to changing neuronal input in the lobster (panulirus interruptus) stomatogastric system: spike number-versus spike frequency-dependent domains. Journal of Neuroscience 17: 5956-5971.
    Mulkey R, Malenka R. 1992. Mechanisms underlying induction of homosynaptic long-term depression in area ca1 of the hippocampus. Neuron 9: 967-975.
    Philadelphia P. 2003. Temporal spacing of synaptic stimulation critically modulates the dependence of LTP on cyclic amp-dependent protein kinase. HIPPOCAMPUS 13: 293-300.
    Reiff D, Thiel P, Schuster C. 2002. Differential regulation of active zone density during long-term strengthening of drosophila neuromuscular junctions. Journal of Neuroscience 22: 9399.
    Renger J, Ueda A, Atwood H, Govind C, Wu C. 2000. Role of cAMP cascade in synaptic stability and plasticity: ultrastructural and physiological analyses of individual synaptic boutons in Drosophila memory mutants. Journal of Neuroscience 20: 3980.
    Rescorla R. 1988. Behavioral studies of pavlovian conditioning. Annu Rev Neurosci 11: 329-352.
    Roche J, Packard M, Moeckel-Cole S, Budnik V. 2002. Regulation of synaptic plasticity and synaptic vesicle dynamics by the PDZ protein scribble. Journal of Neuroscience 22: 6471.
    Rohrbough J, Pinto S, Mihalek R, Tully T, Broadie K. 1999. Latheo, a Drosophila gene involved in learning, regulates functional synaptic plasticity. Neuron 23: 55-70.
    Scharf MT, Woo NH, Lattal KM, Young JZ, Nguyen PV, Abel T. 2002. Protein synthesis is required for the enhancement of long-term potentiation and long-term memory by spaced training. Journal of Neurophysiology 87: 2770-2777.
    Shan D, Zhang R. 2001. Frequency coding of positional information by an identified neuron, the AP cell, in the leech, whitmania pigra. Brain Res Bull 56: 511-515.
    Sone M, Suzuki E, Hoshino M, Hou D, Kuromi H, Fukata M, Kuroda S, Kaibuchi K, Nabeshima Y, Hama C. 2000. Synaptic development is controlled in the periactive zones of drosophila synapses. Development 127: 4157-4168.
    Tsien J, Huerta P, Tonegawa S. 1996. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 87: 1327-1338.
    Varkevisser B, Peterson D, Ogura T, Kinnamon SC. 2001. Neural networks distinguish between taste qualities based on receptor cell population responses. Chemical Senses 26: 499-505.
    Wu M, Bellen H. 1997. Genetic dissection of synaptic transmission in Drosophila. Curr Opin Neurobiol 7: 624-630.
    Wu Y, Kawasaki F, Ordway RW. 2005. Properties of short-term synaptic depression at larval neuromuscular synapses in wild-type and temperature-sensitive paralytic mutants of Drosophila. Journal of Neurophysiology 93: 2396-2405.
    Yang SN, Tang YG, Zucker RS. 1999. Selective induction of LTP and LTD by postsynaptic [Ca2+]i elevation. Journal of Neurophysiology 81: 781-787.
    Yin J, Wallach J, Del Vecchio M, Wilder E, Zhou H, Quinn W, Tully T. 1994. Induction of a dominant negative CREB transgene specifically blocks long-term memory in drosophila. Cell 79: 49-58.
    Zhong Y, Wu CF. 1991. Altered synaptic plasticity in Drosophila memory mutants with a defective cyclic AMP cascade. Science 251: 198.
    Zucker R, Regehr W. 2002. Short-term synaptic plasticity. Annual Review of Physiology 64: 355-405.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE