研究生: |
呂晉賢 Chin-Hsien Lu |
---|---|
論文名稱: |
以光學曲率量測系統研究水氣於聚亞醯胺膜中之行為 Research of the Behavior of Water Vapor in Polyimide Films by Optical Curvature Measurement System |
指導教授: |
蔡哲正
Cho-Jen Tsai |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 66 |
中文關鍵詞: | 聚亞醯胺 、水氣 、光學曲率量測 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以高分子單體聚合成鍊而形成之高分子材料已被廣泛的利用;而在科技工業上,高分子材料也佔有一席之地。聚亞醯胺(Polyimide),可使用之溫度範圍極廣,具高耐磨特性,使它成為一種可撓式基材的明星材料;而其光敏感性也使它成為一種光阻材料。然而它具有的吸水性質,也讓空氣中濕度大小在它的使用性上令人擔心。本實驗以光學曲率量測方法量測矽載板鍍上聚亞醯胺膜、在不同相對濕度和不同溫度的影響下、之曲率值的變化。我們先以相同溫度,相對濕度的週期性變化得知聚亞醯胺的吸水行為不因濕度的變化的次數而遞增或衰減;接著比較不同溫度吸水行為在曲率的變化我們無法觀察出顯著的變化,推測原因為溫度差異太小,以致結果不甚明顯;同時我們以傳統之重量量測得到之結果亦為如此。然而,從此差異不大之結果,我們觀察到會影響吸水熱力學行為之因素為相對濕度而不是分壓,並提出以化學自由能理論為基礎之熱力學導證。最後,我們觀察水氣在厚度較厚聚亞醯胺膜於不同溫度下的擴散反應,而得到擴散係數項對溫度的關係,可以Arrhenius方程式描述,得到此擴散行為之活化能,為7.28kcal/mol。然而較高溫因為應力疏散行為較為顯著,而使得原本因為吸水而彎曲之試片往應力為零之平整試片變化而影響了整個量測值,若分析低溫的擴散行為,則活化能為5.54kcal/mol,其與文獻中之值較為相近。
[1] Turner Alfrey, Jr., E. F. Gurnee, and W. G. Lloyd, “Diffusion in Glassy Polymers”, J. Polym. Sci. (C), 12, 249 (1966).
[2] T. K. Kwei, and H. M. Zupko, “Diffusion in Glassy Polymers. I”J. Polym. Sci. (A2), 7, 867 (1969).
[3] N. L. Thomas, and A. H. Windle, “A Theory of Case II Diffusion”, Polymer, 23, 529 (1982).
[4] Noreen Thomas, and A. H. Windle, “Transport of methanol in poly(methyl methacrylate)”, Polymer, 19, 255 (1978).
[5] H. L. Frisch, T. T. Wang, and T. K. Kwei, “Diffusion in Glassy Polymers. II”J. Polym. Sci. (A2), 7, 879 (1969).
[6] A. Peterlin, “Diffusion with Discontinuous Swelling. V. Type II Diffusion into Sheets and Speres”, J. Polym. Sci. : Polym. Phys. Edn. ,17, 1741 (1979).
[7] G. Astarita, and G. C. Sarti, “A Class of Mathematical Models for Sorption of Swelling Solvents in Glassy Polymers”, Polym. Eng. Sci., 18, 388 (1978).
[8] Giulio C. Sarti, “Solvent osmotic stresses and the prediction of Case II transport kinetics”, Polymer, 20, 827 (1979).
[9] H. Han, J. Seo, M. Ree, S. M. Pyo, and C. C. Gryte, “Water Sorption and diffusion Behaviours in Thin Films of Photosensitive Polyimides”, Polymer, 39, 2963 (1998).
[10] Julie P. Harmon, Sanboh Lee, and J. C. M. Li, “Methanol Transport in PMMA: The Effect of Mechanical Deformation”, J. Polym. Sci. (A), 25, 3215 (1987).
[11] Peeyush Bhargava, Kathy C. Chuang, Kenway Chen, and Alan Zehnder, “Moisture Diffusion Properties of HFPE-II-52 Polyimide”, J. Appl. Polym. Sci., 102, 3471 (2006).
[12] Kyriaki Manoli, Dimitris Goustouridis, Stavros Chatzandroulis, Ioannis Raptis, Evangelos S. Valamontes, and Merope Sanopoulou, “Vapor sorption in thin supported polymer films studied by white light interferometry”, Polymer, 47, 6117 (2006).
[13] Li-Qiang Chu, Hai-Quan Mao, and Wolfgang Knoll, “In situ characterization of moisture sorption/desorption in thin polymer films using optical waveguide spectroscopy”, Polymer, 47, 7406 (2006).
[14] Li-Hsin Chang, and Harland Tompkins, “Method for measuring diffusion of moisture in polyimide”, Appl. Phys. Lett, 59, 2278 (1991).
[15] M. Giacomeli Penon, S. J. Picken, M. Wübbenhorst, G. de Vos, and J. van Turnhout, “Dielectric water sorption analysis”, Rev. Sci. Instrum., 77, 115107 (2006).
[16] A. Jain, V. Gupta, and S. N. Basu, “A quantitative study of moisture adsorption in polyimide and its effect on the strength of the polyimid/silicon nitride interface”, Acta Materialia, 53, 3147 (2005).
[17] Sevtap Vildiz, Yesim Hepuzer, Yusuf Yagci, and Önder Pekcan, “Swelling and Drying Kinetics of Polytetrahydrofuran and Polytetrahydrofuran-Poly (methyl methacrylate) Gels: A Photon Transmission Study”, J. Appl. Polym. Sci., 87, 632 (2003).
[18] M. Erdogan, and Ö. Pekcan, “Temperature effect on gel swelling: a fast transient fluorescence study”, Polymer, 42, 4973 (2001).
[19] H. Han, C. C. Gryte, and M. Ree, “Water Diffusion and Sorption in Films of High-performance Poly(4,4’-oxydiphenylene Pyromellitimide): Effects of Humidity, Imidization History and Film Thickness”, Polymer, 36, 1663 (1995).
[20] M. Ree, H. Han, and C. C. Gryte, “Water Sorption in Thin Films of High-temperature Polyimides: The Effect of Imidization History”, High Perform. Polym. , 6, 321 (1994).
[21] Http://www.cactus2000.de
[22] Lowe, P. R. , and J. M. Ficke, “The Computation of Saturation Vapor Pressure”, Tech. Paper No. 4-74, Environmental Prediction Research Facility, Naval Postgraduate School, Monterey, CA, 27 pp. (1974).
[23] Crank J, Park JS, Diffusion in Polymers, (London Academic Press, 1968), 259.
[24] Robert T. DeHoff, Thermodynamics n Materials Science, (McGraw-Hill, Inc., 1993), 189.
[25] David R. Gaskell, Introduction to the Thermodynamics of Materials, 4th Edition, (Taylor and Francis Books, Inc., 2003), 211&311.
[26] P. W. Atkins, Elements of Physical Chemistry, 3rd Edition, (Oxford University Press, 1993), 114.
[27] Jongchul Seo, Jongho Jeon, Yong Gun Shul, and Haksoo Han, “Water Sorption and Activation Energy in Polyimide Thin Films”, J. Polym. Sci. (B), 38, 2714 (2000).
[28] J. S. Vrentas, and J. L. Duda, “Diffusion in Polymer-Solvent Systems. I. Reexamination of the Free-Volume Theory”, J. Polym. Sci. (Polym. Phys. Edn.), 15, 403 (1977).