簡易檢索 / 詳目顯示

研究生: 林道皿
Lin, Dao-Ming
論文名稱: 四連桿包絡線解析計算法之比較 - 包絡線法與瞬心法
Comparison of Methods for Generating the Line Envelope on a Four-Bar Linkage - Envelope-Theorem Method and Instant-Center Method
指導教授: 吳隆庸
Wu, Long-Iong
口試委員: 蔡錫錚
Tsai, Shyi-Jeng
雷衛台
Lei, Wei-Tai
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 108
中文關鍵詞: 四連桿包絡線法瞬心法
外文關鍵詞: Four-bar linkage, Envelope Theorem, Instant Center Method
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文針對瞬心法與傳統包絡線法,比較兩法在求解包絡線時的推導過程與結果。文中將透過實際例子,以解析法與數值法證明兩方法均可產生相同包絡線。本論文旨在說明採用瞬心法之優點。包絡線法之計算方程式純粹為代數間的計算,透過解第一曲線族與其對族群參數微分一次之第二曲線族的聯立方程式,得到解析解,其過程相當繁複且計算不易。相對地,若使用瞬心概念,能夠以幾何關係找到通過瞬心且垂直於第一曲線族之第二曲線族,兩曲線族交點也可求得包絡線。此方法能以較為直觀的幾何關係來求出包絡線,相較之下更為簡明、快速。在論文中的例子,也表現了包絡線法之第二曲線族即為通過瞬心且垂直於第一曲線族之曲線族。


    This thesis presents a method-comparison study to evaluate the applicability and the effectiveness of the instant center approach, compared with the conventional envelope theory. Given the same input parameters, two methods yield identical resulting envelopes, which are illustrated analytically and numerically via the case studies. The main aim of this thesis is illustrating the merits of adopting the instant-center approach over the envelope theory. The formulation based on the envelope theory is purely an algebraic arrangement. Expressing an envelope in an explicit form involve differentiation and simultaneous solution of equations describing a family of straight lines, which are burdensome and difficult to operate. Oppositely, using the concept of instant center allows one to locate the common normal which pass through the instant center and at last determine the envelope. This approach offers more intuitive comprehensions about geometric features of a mechanism of interest, comparably simple and efficient. The case studies also have shown an insightfully geometric fact that a second family of straight lines is a straight trajectory orthogonal to a family of straight lines.

    摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 IX 符號說明 XI 第一章 前言 1 1-1 概論 1 1-2 文獻回顧 2 1-3 研究目的 3 第二章 基本理論 4 2-1 包絡線原理 4 2-2 平面機構的瞬心 5 第三章 雙滑件四連桿機構包絡線推導與分析 7 3-1 座標轉換 7 3-2 包絡線法求雙滑件四連桿機構包絡線 9 3-3 瞬心法求雙滑件四連桿機構包絡線 13 3-4 包絡線法與瞬心法之比較 18 第四章 單滑件四連桿機構包絡線推導與分析 21 4-1 座標轉換 21 4-2 包絡線法求單滑件四連桿機構包絡線 22 4-3 瞬心法求單滑件四連桿機構包絡線 27 4-4 包絡線法與瞬心法之比較 33 第五章 平面四連桿機構包絡線推導與分析 39 5-1 座標轉換 39 5-2 包絡線法求平面四連桿機構包絡線 40 5-3 瞬心法求平面四連桿機構包絡線 47 5-4 包絡線法與瞬心法之比較 53 第六章 拋物線機構包絡線推導與分析 59 6-1 座標轉換 60 6-2 包絡線法求拋物線機構包絡線 61 6-3 瞬心法求拋物線機構包絡線 64 6-4 包絡線法與瞬心法之比較 69 6-5 調整外接桿件參數對包絡線之影響 72 第七章 雙曲線機構包絡線推導與分析 85 7-1 座標轉換 86 7-2 包絡線法求雙曲線機構包絡線 87 7-3 瞬心法求雙曲線機構包絡線 92 7-4 包絡線法與瞬心法之比較 97 第八章 結論 103 參考文獻 105 附錄 A 106 包絡線法求平面四連桿機構包絡線之各項次解析式 106

    [1] 顏鴻森,吳隆庸,2006,機構學,臺灣東華書局股份有限公司,178-179頁。
    [2] Roberts, S., “On the motion of a plane under certain conditions,” Proc. London Math. Soc., Vol.3, 1871, pp. 286-318.
    [3] Roberts, S., “On Three-Bar Motion in Plane Space,” Proc. London Math. Soc., Vol.7, 1875, pp. 14-23.
    [4] Hunt, K. H., “Envelopes and Line-Loci from the Planar Four-Bar Linkage; Introductory theory and Applications,” Theory of Machines and Mechanisms, 1979, pp. 522-525.
    [5] Hunt, K. H., and Fichter, E. F., “Equations for Four-Bar Line-Envelopes,” Journal of Mechanical Design, Vol. 103, 1981, pp. 743-749.
    [6] Kimbrell, J. E., and Hunt, K. H., “A Classification of Coupler-Line Envelopes from Hinged Four-Bar Linkages,” Journal of Mechanical Design, Vol. 103, 1981, pp. 750-757.
    [7] 吳隆庸,曾國宗,2003,盤形凸輪輪廓解析計算法之比較 – 包絡線法與向量表示法,碩士論文,國立清華大學動力機械工程學系,新竹市。
    [8] Boltyanskii, V. G., “Envelopes”, Macmillan Company, New York, 1964, pp. 17-19.
    [9] 方德植,1984,微分幾何基礎,科學出版社,72-74頁。
    [10] Martin, G. H., “Kinematics and Dynamics of Machines,” 2nd Ed., McGraw-Hill, New York, 1982, pp. 208-216.
    [11] Lent, D.,“Analysis and Design of Mechanisms,” 2nd Ed., Prentice-Hall, New Jersey, 1972, pp. 384-392.

    QR CODE