簡易檢索 / 詳目顯示

研究生: 李世惠
Shih-Hui Lee
論文名稱: 環境荷爾蒙型分子分拓印高分子之製備與特性鑑定
Preparations and Characterizations of Molecularly Imprinted Polymer for Environmental Hormones Detection
指導教授: 董瑞安
Ruey-An Doong
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 70
中文關鍵詞: 分子拓印高分子雌黃激素特性鑑定
外文關鍵詞: molecularly imprinted polymer, β-estradiol, characteristics
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來工業蓬勃發展,大量的化學物質被釋放到環境中,嚴重影響生態,其中最嚴重的一類為環境荷爾蒙,所以發展具有可分離偵測環境荷爾蒙潛力的分子拓印高分子是非常重要的。 分子拓印高分子近年來被大量應用在分離、感測器上,但大部分的文獻都著重探討分子拓印分子的辨識效能和應用性,很少著重於其性質鑑定與辨識效能之間關係的探討。 本研究的目的在於利用非共價鍵拓印的方式,在不同條件下製備分子拓印高分子,以β-estradiol當作模板,Methacrylic acid當作功能性單體,而Ethylene glycol dimethacrylate當作交聯劑,並使用甲醇當作移除溶劑搭配索氏萃取的方式移除模板,並使用SEM、BET、FT-IR鑑定分子拓印高分子移除模板前後之性質,並探討其與辨識效能間的關係。 發現可由了解其性質鑑定,來解釋其辨識能力的不同,在模板移除後,其表面積增加、平均孔洞直徑變小都可用於證明模板和未反應物被移除,在此的未反應包含未反應的單體和交聯劑及反應不完全導致沒有連接到網狀結構上的支鏈跟直鏈分子。 當使用acetonitrile為溶劑合成的分子拓印高分子,移除模板前後,其表面積由151 cm2/g增加至292 cm2/g,但當使用chloroform為溶劑時,模板移除前後的表面積由188cm2/g增加到230cm2/g。 acetonitrile合成的分子拓印高分子雖具有較大的比表面積,但其吸附效果不如使用chloroform合成的分子拓印高分子好,經由FT-IR和BET的孔洞分布了解辨識能力差異的原因,發現分子拓印高分的吸附是與辨識部位有關,而非與表面積的多寡有關。 由這些研究結果顯示透過分子拓印高分子移除模板前後的性質鑑定,可以了解分子辨識能力差異的原因。


    Environmental hormones are one of the most often found contaminants produced from commodities. Estrodiol is an endocrine disruptor which has been suspected to cause disruption in the endocrine system. The development of the estradiol-based molecularly imprinted polymer is very important. Molecularly imprinted technique has recently received much attention in chromatography and biosensors. However, most studies focus on the applications and the recognition ability of MIP, not to discuss the relationship between the characteristics and the binding ability. The purpose of this study was to develop and characterize estradiol-imprinted polymer. Estradiol-imprinted polymer was prepared in bulk polymerization by non-covalent binding. Estradiol and methacrylic acid were used as template and functional monomer, respectively and the optimal solvent used to synthesize by chloroform. The maximum adsorption amount for estradiol is 0.7998 mg/g. However, the MIP synthesized in chloroform with high ability has low surface area. The result of characteristics can explain this phenomenon and prove that the binding ability is positively correlation to active site, not surface area.

    謝誌…………………………………………………………………………… Ι 中文摘要……………………………………………………………………... Ⅱ Abstract……………………………………………………………………… III Content Index………………………………………………………………. IV Table Index………………………………………………………………….. VII Figure Index.................................................................................................... VIII Chapter 1 Introduction…………………………………………………... 1 1.1 Motivation……………………………………………………………… 1 1. 2 Objective………………………………………………………………. 2 Chapter 2 Background and Theory…………………………………... 4 2. 1 Environmental hormones……………………………………………… 4 2. 1. 1 Introduction…………………………………………………… 4 2. 1. 2. Effects on humans and animals……………………………… 4 2. 2 Analytical techniques for environmental hormones…………………... 5 2. 3 Molecular imprinting technology……………………………………... 6 2. 3. 1 History of molecularly imprinted polymer…………………… 6 2. 3. 2 The principle of molecular imprinting………………………... 6 2. 4 The methods of imprinting……………………………………………. 7 2. 4. 1 Covalent imprinting…………………………………………... 7 2. 4. 2 Non-covalent imprinting……………………………………… 8 2. 4. 3 Semi-covalent imprinting…………………………………….. 8 2. 5 The polymerization method…………………………………………… 8 2. 5. 1 Bulk polymerization………………………………………….. 9 2. 5. 2 Suspension polymerization……………………........................ 9 2. 5. 3 Precipitation polymerization………………………………….. 10 2. 5. 4 Two-step swelling…………………………………………….. 10 2. 5. 5 Core-shell emulsion polymerization………………………….. 10 2. 6 The synthetic parameters affected sensitivity………………………… 12 2. 6. 1 Solvents (porogens)…………………………………………... 13 2. 6. 2 Temperature…………………………………………………... 13 2. 6. 3 Pressure……………………………………………………….. 14 2. 7 The applications of molecularly imprinted polymer…………………... 14 2. 7. 1 Separations……………………………………………………. 14 2. 7. 2 Drug delivery systems………………………………………... 15 2. 7. 3 Sensors………………………………………………………... 15 2. 8 Molecularly imprinted polymers for environmental hormones.............. 16 Chapter 3 Materials and methods…………………………………….. 19 3. 1 Regents and materials…………………………………………………. 19 3. 2 Preparation of molecular imprinted polymers (MIPs)………………… 19 3. 3 Characterization……………………………………………………….. 25 3. 3. 1 UV-vis spectrometry………………………………………….. 25 3. 3. 2 Infrared spectrometer…………………………………………. 25 3. 3. 3 Surface area analyzer…………………………………………. 25 3. 3. 4 Scanning electron microscopy (SEM)………………………... 26 3. 3. 5 Batch rebinding……………………………………………….. 27 3. 3. 5. 1 Effect of concentrations............................................. 27 3. 3. 5. 2 Effect of thermal…………………………………… 27 3. 4 Application…………………………………………………………….. 27 3. 4. 1 High-performance liquid chromatography (HPLC)………….. 27 Chapter 4 Results and discussions……………………………… 29 4. 1. Characterization………………………………………………………. 29 4. 1. 1 Morphology…………………………………………………….. 29 4. 1. 2 Surface area analyzer…………………………………………… 32 4. 1. 3 Infrared spectrometer…………………………………………… 38 4. 2 The removal of template………………………………………………. 41 4. 3 Adsorption and binding ability………………………………………... 43 4. 3. 1. Adsorption isotherm……………………………………………. 44 4. 3. 2 Effect of temperature on MIP stability…………………………. 47 4. 3. 3 The effect of the temperature synthesized……………………… 48 4. 4 The effect of porogen………………………………………………….. 49 4. 5 Chromatographic evaluation…………………………………………... 50 Chapter 5 Conclusion…………………………………………………….. 55 Reference…………………………………………………………………….. 56 Table Index Table 2-1 Advantages and disadvantages of imprinting method………………. 17 Table 2-2 Summary of molecularly imprinted polymers for natural environmental hormones…………….……………………………. 18 Table 3-1 The components of reagents and conditions for the synthesis of MIPs……………………………………..………………………… 22 Table 4-1 The surface area, pore volume, average diameter data for molecularly imprinted polymers…………..………………………. 33 Table 4-2 The effect of the temperature synthesized…………………………... 43 Table 4-3 Chromatographic data obtained from HPLC analysis of 17β-estradiol-imprinted polymer….………………………………. 52 Figure Index Figure 1-1 The structure of 17β-estradiol…………………………………….. 2 Figure 2-1 Graphs to show the number of papers published in molecular imprinting science 1970…………………………………………. 6 Figure 2-2 Schematic diagram of the molecularly imprinting process……….. 7 Figure 2-3 SEM and TEM micrographs of the polymers obtained by the different method…..………………………………………………. 12 Figure 3-1 The flowchart of experimental procedures designed in this study.... 21 Figure 3-2 Synthesis of the molecularly imprinted polymer…………………. 23 Figure 3-3 The apparatus for preparation of molecularly imprinted polymer..... 24 Figure 3-4 The apparatus for the Soxhlet extraction…………………………. 24 Figure 4-1 Scanning electron micrographs of A. T. I. 24 (A) before and (B) after the removal template by methanol…..……………………… 30 Figure 4-2 Scanning electron micrographs of C. F. I. 24 (A) before and (B) after the removal template by methanol…..……………………… 31 Figure 4-3 Pore size distribution for A. T. I. 24 (A) before and (B) after the removal of template………………………………………………... 34 Figure 4-4 Pore size distribution for C. F. I. 24 (A) before and (B) after the removal of template…..……….…………………………………... 35 Figure 4-5 Adsorption-desorption isotherm for A.T. I. 24 (A) before and (B) after the removal of template…..……….…………………………. 36 Figure 4-6 Adsorption-desorption isotherm for C. F. I. 24 (A) before and (B) after the removal of template……….…………………………….. 37 Figure 4-7 FT-IR spectra of A. T. I. 24 before and after the removal of template……………………………… …………………………… 39 Figure 4-8 FT-IR spectra of C. F. I. 24 before and after the removal of template…..………………………………………………………... 39 Figure 4-9 FT-IR spectra of A. T. I. 24 and C. F. I. 24 after the removal of template……………………………………………………………. 40 Figure 4-10 FT-IR spectra of estradiol………...………………………………. 40 Figure 4-11 The calibration curve of β-estradiol in methanol at 280nm………. 42 Figure 4-12 The calibration curve of the β-estradiol peak area in methanol…... 42 Figure 4-13 The calibration curve of β-estradiol in acetonitrile at 280nm…….. 43 Figure 4-14 The calibration curve of the β-estradiol peak area in acetonitrile... 44 Figure 4-15 The adsorption isotherm of C. F. I. 24……………………………. 45 Figure 4-16 The relationship of 1/the equilibrium concentration (1/C) and 1/ the amount of adsorption (1/S) of C. F. I. 24……………………... 46 Figure 4-17 The adsorption isotherm of A. T. I. 24……………………………. 46 Figure 4-18 The relationship of the 1/equilibrium concentration (1/C) and 1/ the amount of adsorption (1/S) of A. T. I. 24……………………... 47 Figure 4-19 The heat effect of MIP……………………………………………. 48 Figure 4-20 The chromatogram of the control polymer……………………….. 53 Figure 4-21 The chromatogram of the imprinted polymer…………………….. 53 Figure 4-22 Structures of the steroids and PAHs used in this study…………… 54

    1. Polyakov, M. V., Zhur. Fiz. Khim. 1931, 2, 799-805.
    2. Gorog, S., Recent advances in the analysis of steroid hormones and related drugs. Anal. Sci. 2004, 20, (5), 767-782.
    3. Ngundi, M.; Sadik, O.; Yamaguchi, T.; Suye, S., First comparative reaction mechanisms of beta-estradiol and selected environmental hormones in a redox environment. Electrochem. Commun. 2003, 5, (1), 61-67.
    4. Tjernberg, A.; Edlund, P.; Noren, B., Screening of eltanolone metabolites in dog urine by anion-exchange/reversed-phase liquid chromatography and mass spectrometry. J. Chromatogr. B 1998, 715, (2), 395-407.
    5. Wang, Y.; Su, P.; Zhang, X.; Chang, W., Enhancement of the sensitivity of a capillary electrophoresis immunoassay for estradiol with laser-induced fluorescence based on a fluorescein-labeled secondary antibody. Anal. Chem. 2001, 73, (22), 5616-5619.
    6. Alexander, C.; Davidson, L.; Hayes, W., Imprinted polymers: artificial molecular recognition materials with applications in synthesis and catalysis. Tetrahedron 2003, 59, (12), 2025-2057.
    7. Wulff, G.; Grobeeinsler, R.; Vesper, W.; Sarhan, A., Enzyme-analogue built polymers.5. specificity distribution of chiral cavities prepared in synthetic-polymers. Makromol. Chem. 1977, 178, (10), 2817-2825.
    8. Makoto Komiyama, T. T., Takashi Mukawa, and Hiroyuki Asanuma, Molecular Imprinting.
    Wiley-Vch: 2002.
    9. Wulff, G.; Bellmann, S.; Schmid, J.; Podzimek, S., Preparation and polymer-analogous reactions of a poly(vinyl sugar) with a C-C bond between sugar and polymer backbone. Macromol. Chem. Physic. 1997, 198, (3), 763-775.
    10. Vlatakis, G.; Andersson, L.; Muller, R.; Mosbach, K., Drug assy using antibody mimics made by molecular imprinting. Nature 1993, 361, (6413), 645-647.
    11. Arshady, R.; Mosbach, K., Synthesis of substrate-selective polymers by host-guest polymerization. Macromol. Chem. Phys. 1981, 182, (2), 687-692.
    12. Piletsky, S.; Andersson, H.; Nicholls, I., Combined hydrophobic and electrostatic interaction-based recognition in molecularly imprinted polymers. Macromolecules 1999, 32, (3), 633-636.
    13. Cui, A.; Singh, A.; Kaplan, D., Enzyme-based molecular imprinting with metals. Biomacromolecules 2002, 3, (6), 1353-1358.
    14. Whitcombe, M.; Rodriguez, M.; Villar, P.; Vulfson, E., A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting - synthesis and characterization of polymeric receptors for cholesterol. J. Am. Chem. Soc. 1995, 117, (27), 7105-7111.
    15. Perez-Moral, N.; Mayes, A., Comparative study of imprinted polymer particles prepared by different polymerisation methods. Anal. Chim. Acta. 2004, 504, (1), 15-21.
    16. Mayes, A.; Mosbach, K., Molecularly imprinted polymer beads: Suspension polymerization using a liquid perfluorocarbon as the dispersing phase. Anal. Chem. 1996, 68, (21), 3769-3774.
    17. Ye, L.; Cormack, P.; Mosbach, K., Molecularly imprinted monodisperse microspheres for competitive radioassay. Anal. Commun. 1999, 36, (2), 35-38.
    18. Ye, L.; Cormack, P.; Mosbach, K., Molecular imprinting on microgel spheres. Anal. Chim. Acta. 2001, 435, (1), 187-196.
    19. Ye, L.; Mosbach, K., Molecularly imprinted microspheres as antibody binding mimics. React. Funct. Polym. 2001, 48, (1-3), 149-157.
    20. Hosoya, K.; Yoshizako, K.; Tanaka, N.; Kimata, K.; Araki, T.; Haginaka, J., Uniform-size macroporous polymer-based stationary-phase for HPLC prepared through molecular imprinting technique. Chem. Lett. 1994, (8), 1437-1438.
    21. Carter, S.; Rimmer, S., Surface molecularly imprinted polymer core-shell particles. Adv. Funct. Mater. 2004, 14, (6), 553-561.
    22. Perez, N.; Whitcombe, M.; Vulfson, E., Surface imprinting of cholesterol on submicrometer core-shell emulsion particles. Macromolecules 2001, 34, (4), 830-836.
    23. Perez, N.; Whitcombe, M.; Vulfson, E., Molecularly imprinted nanoparticles prepared by core-shell emulsion polymerization. J. Appl. Polym. Sci. 2000, 77, (8), 1851-1859.
    24. Cormack, P.; Elorza, A., Molecularly imprinted polymers: synthesis and characterisation. J. Chromatogr. B 2004, 804, (1), 173-182.
    25. Haginaka, J.; Sanbe, H., Uniformly sized molecularly imprinted polymer for (S)-naproxen - Retention and molecular recognition properties in aqueous mobile phase. J. Chromatogr. A 2001, 913, (1-2), 141-146.
    26. Piletsky, S.; Piletska, E.; Karim, K.; Freebairn, K.; Legge, C.; Turner, A., Polymer cookery: Influence of polymerization conditions on the performance of molecularly imprinted polymers. Macromolecules 2002, 35, (19), 7499-7504.
    27. Spivak, D.; Simon, R.; Campbell, J., Evidence for shape selectivity in non-covalently imprinted polymers. Anal. Chim. Acta. 2004, 504, (1), 23-30.
    28. Lu, Y.; Li, C.; Wang, X.; Sun, P.; Xing, X., Influence of polymerization temperature on the molecular recognition of imprinted polymers. J. Chromatogr. B 2004, 804, (1), 53-59.
    29. Sellergren, B.; Dauwe, C.; Schneider, T., Pressure-induced binding sites in molecularly imprinted network polymers. Macromolecules 1997, 30, (8), 2454-2459.
    30. Piletsky, S.; Guerreiro, A.; Piletska, E.; Chianella, I.; Karim, K.; Turner, A., Polymer cookery. 2. Influence of polymerization pressure and polymer swelling on the performance of molecularly imprinted polymers. Macromolecules 2004, 37, (13), 5018-5022.
    31. Andersson, L., Molecular imprinting: developments and applications in the analytical chemistry field. J. Chromatogr. B 2000, 745, (1), 3-13.
    32. Haupt, K., Moleculy imprinted polymers: The next generation. Anal. Chem. 2003, 75, (17), 376A-383A.
    33. Mahony, J.; Nolan, K.; Smyth, M.; Mizaikoff, B., Molecularly imprinted polymers-potential and challenges in analytical chemistry. Anal. Chim. Acta. 2005, 534, (1), 31-39.
    34. Alvarez-Lorenzo, C.; Concheiro, A., Molecularly imprinted polymers for drug delivery. J. Chromatogr. B 2004, 804, (1), 231-245.
    35. Puoci, F.; Iemma, E.; Muzzalupo, R.; Spizzirri, U.; Trombino, S.; Cassano, R.; Picci, N., Spherical molecularly imprinted polymers (SMIPs) via a novel precipitation polymerization in the controlled delivery of sulfasalazine. Macromol. Biosci. 2004, 4, (1), 22-26.
    36. Greene, N.; Shimizu, K., Colorimetric molecularly imprinted polymer sensor array using dye displacement. J. Am. Chem. Soc. 2005, 127, (15), 5695-5700.
    37. Greene, N.; Morgan, S.; Shimizu, K., Molecularly imprinted polymer sensor arrays. Chem. Commun. 2004, (10), 1172-1173.
    38. Lee, J.; Greene, N.; Rushton, G.; Shimizu, K.; Hong, J., Carbohydrate recognition by porphyrin-based molecularly imprinted polymers. Org. Lett. 2005, 7, (6), 963-966.
    39. Rachkov, A.; McNiven, S.; Cheong, S.; El'Skaya, A.; Yano, K.; Karube, I., Molecularly imprinted polymers selective for beta-estradiol. Supramol. Chem. 1998, 9, (4), 317-323.
    40. Rachkov, A.; Cheong, S.; El'skaya, A.; Yano, K.; Karube, I., Molecularly imprinted polymers as artificial steroid receptors. Polym. Advan. Technol. 1998, 9, (8), 511-519.
    41. Rachkov, A.; McNiven, S.; El'skaya, A.; Yano, K.; Karube, I., Fluorescence detection of beta-estradiol using a molecularly imprinted polymer. Anal. Chim. Acta. 2000, 405, (1-2), 23-29.
    42. Haginaka, J.; Sanbe, H., Uniform-sized molecularly imprinted polymers for beta-estradiol. Chem. Lett. 1998, (11), 1089-1090.
    43. Piscopo, L.; Prandi, C.; Coppa, M.; Sparnacci, K.; Laus, M.; Lagana, A.; Curini, R.; D'Ascenzo, G., Uniformly sized molecularly imprinted polymers (MIPs) for 17 beta-estradiol. Macromol. Chem. Physic. 2002, 203, (10-11), 1532-1538.
    44. Cheong, S.; McNiven, S.; Rachkov, K.; Levi, R.; Yano, K.; Karube, I., Testosterone receptor binding mimic constructed using molecular imprinting. Macromolecules 1997, 30, (5), 1317-1322.
    45. Sreenivasan, K., Effect of the type of monomers of molecularly imprinted polymers on the interaction with steroids. J. Appl. Polym. Sci. 1998, 68, (11), 1863-1866.
    46. Szumski, M.; Buszewski, B., Molecularly imprinted polymers: A new tool for separation of steroid isomers. J. Sep. Sci. 2004, 27, (10-11), 837-842.
    47. Haginaka, J., Pharmaceutical and biomedical applications of enantioseparations using liquid chromatographic techniques. J. Pharmaceut. Biomed. 2002, 27, (3-4), 357-372.
    48. Dong, H.; Tong, A.; Li, L., Syntheses of steroid-based molecularly imprinted polymers and their molecular recognition study with spectrometric detection. Spectrochim. Acta. A 2003, 59, (2), 279-284.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE