研究生: |
陳柏宏 |
---|---|
論文名稱: |
界面活性劑對金奈米結構及形貌影響之研究 Effects of surfactants on the Structure and Morphology of Gold Nanoparticles |
指導教授: | 黃國柱 |
口試委員: |
黃哲勳
張聰慧 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 114 |
中文關鍵詞: | 奈米顆粒 、界面活性劑 、拉曼增強散射 |
外文關鍵詞: | Nanoparticles, Surfactants, SERS |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文研究中,我們利用本實驗室自行合成之雙十四烷基溴化聯吡啶做為合成奈米金顆粒之界面活性劑,且成功以此界面活性劑製備出高純度的金奈米平板,並觀察在不同的反應條件下,對金奈米平板結構所造成的影響,推論出金奈米平板可能的生長機制為小尺寸奈米顆粒聚集並且在界面活性劑形成的模板作用下,逐漸成長為金奈米平板。我們以此結構來進行表面增強拉曼散射之試驗,其訊號提升效果遠大於球狀金奈米粒子,表示此金奈米平板結構為一可應用在表面增強拉曼散射實驗上之良好基材。總體而言,我們發展了一製備金奈米結構之新方法,且製備出之金奈米結構具有良好的近紅外光吸收集大幅提升拉曼訊號等特性,因此我們預期此材料在生醫應用上應有不錯的發展性。
In this study ,we synthesized a new ditetradecylpyridinium bromide based surfactant and further utilized in the development of gold nanoplates structures .To study the plausible growth mechanism of these nanoplates ,different reaction conditions were adopted and optimized .The growth mechanistic studies reveal that, smaller size gold nanoparticles tend to aggregate together and in the presence of surfactant as template,which gradually leads to the formation of gold nanoplates. These gold nanoplates possess superior optical properties, such as,extendable NIR absorption and moreover,the Surface Enhanced Raman Scattering (SERS) study shows that the signal enhancement for gold nanoplates is quiet larger than spherical nanoparticles. Overall, our study has proposed a new method to fabricate gold nanostructure with superior optical and SERS properties ,which explores its applications in the field of biomedicine.
[1] Y.-H. Chen, H.-H. Hung, M. H. Huang, J. Am. Chem. Soc. 2009, 131, 9114.
[2] R. Kubo, J. Phys. Soc. Jpn. 1962, 17, 975
[3] 吳民耀, 劉威志, 物理雙月刊 2006, 28卷, 2期, 486
[4] K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, J. Phys. Chem. B 2003, 107, 668.
[5] G. Schmid, Clusters and Colloids From Theory to Applications 1994
[6] F. Mafune, J. Kohno, Y. Takeda, T. Kondow, H. Sawabe, J. Phys. Chem. B 2000, 104, 8333.
[7] F. Mafune, J.-ya Kohno, Y. Takeda, T. Kondow, J. Phys. Chem. B 2000, 104, 9111
[8] F. Mafune, J. Kohno, Y. Takeda, T. Kondow, H. Sawabe, J. Phys. Chem. B 2001, 105, 5114..
[9] 郭清癸, 黃俊傑, 牟中原, 物理雙月刊 2006, 23卷, 6期, 614
[10] Y. Y. Wu, P. D. Yang, J. Am. Chem. Soc. 2001, 123, 3165.
[11] A. C. Curtis, D. G. Duff, P. P. Edwards, D. A. Jefferson, B. F. G. Johnson, A. I. Kirkland, A. S. Wallace, J. Phys. Chem. 1988, 92, 2270.
[12] Y. Mizukoshi, K. Okitsu, Y. Maeda, T. A. Yamamoto, R. Oshima, Y. Nagata, J. Phys. Chem. B 1997, 101, 7033.
[13] N. A. Dhas, H. Cohen, A. Gedanken, J. Phys. Chem. B 1997, 101, 6834.
[14] F. Kim, J. H. Song, P. D. Yang, J. Am. Chem. Soc. 2002, 124, 14316.
[15] Y. Y. Yu, S. S. Chang, C. L. Lee, C. R. C. Wang, J. Phys. Chem. B 1997, 101, 6661.
[16] L. D. Qin, S. Park, L. Huang, C. A. Mirkin, Science 2005, 309, 113.
[17] H. Wohltjen, A. W. Snow, Anal. Chem. 1998, 70, 2856.
[18] J. Zeng, Q. Zhang, J. Chen, Y. Xia, Nano Lett. 2010, 10, 30.
[19] M. S. Han, A. K. R. Lytton-Jean, C. A. Mirkin, J. Am. Chem. Soc. 2006, 128, 4954.
[20] N. R. Jana, L. Gearheart, C. J. Murphy, J. Phys. Chem. B 2001, 105, 4065.
[21] C. J. Murphy, N. R. Jana, Adv. Mater. 2002, 14, 80.
[22] B. Nikoobakht, M. A. El-Sayed, Langmuir 2001, 17, 6368.
[23] H. Chen, X. Kou, Z. Yang, W. Ni, J. Wang, Langmuir 2008, 24, 5233.
[24] E. Hao, R. C. Bailey, G. C. Schatz, J. T. Hupp, S. Y. Li, Nano Lett. 2004, 4, 327.
[25] M. Born, “Principles of Optics” 1980.
[26] Y. G. Sun, B. Mayers, Y. N. Xia, Nano Lett. 2003, 3, 675.
[27] R. C. Jin, Y. C. Cao, E. C. Hao, G. S. Metraux, G. C. Schatz, C. A. Mirkin, Nature 2003, 425, 487.
[28] R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, J. G. Zheng, Science 2001, 294, 1901.
[29] M. Maillard, S. Giorgio, M. P. Pileni, Adv. Mater. 2002, 14, 1084.
[30] S. S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad, M. Sastry, Nat. Mater. 2004, 3, 482.
[31] S. S. Shankar, A. Rai, A. Ahmad, M. Sastry, Chem. Mater. 2005, 17, 566.
[32] C. H. Kuo, M. H. Huang, Langmuir 2005, 21, 2012.
[33] C. J. Murphy, T. K. San, A. M. Gole, C. J. Orendorff, J. X. Gao, L. Gou, S. E. Hunyadi, T. Li, J. Phys. Chem. B 2005, 109, 13857.
[34] A. Gole, C. J. Murphy, Chem. Mater. 2004, 16, 3633.
[35] X. Kou, S. Zhang, C.-K. Tsung, M. H. Yeung, Q. Shi, G. D. Stucky, L. Sun, J. Wang, C. Yan, J. Phys. Chem. B 2006, 110, 16377.
[36] N. R. Jana, L. Gearheart, C. J. Murphy, Adv. Mater. 2001, 13, 1389.
[37] F. Kim, K. Sohn, J. Wu, J. Huang, J. Am. Chem. Soc. 2008, 130, 14442.
[38] A. Naravanaswamy, H. Xu, N. Pradhan, X. Peng, Angew. Chem. Int. Ed. 2006, 45, 5361.
[39] 王崇仁, 科學發展 2002, 354, 48-51
[40] M. Z. Liu, P. Guyot-Sionnest, J. Phys. Chem. B 2005, 109, 22192.
[41] C. Shen, C. Hui, T. Yang, C. Xiao, J. Tian, L. Bao, S. Chen, H. Ding, H. Gao, Chem. Mater. 2008, 20, 6939.
[42] X. H. Huang, I. H. El-Sayed, W. Qian, M. A. El-Sayed, J. Am. Chem. Soc. 2006, 128, 2115.
[43] J. X. Gao, C. M. Bender, C. J. Murphy, Langmuir 2003, 19, 9065.
[44] H. Y. Wu, H. C. Chu, T. J. Kuo, C. L. Kuo, M. H. Huang, Chem. Mater. 2005, 17, 6447.
[45] T. S. Sreeprasad, A. K. Samal, T. Pradeep, Langmuir 2007, 23, 9463-9471
[46] H.-L. Wu, C.-H. Kuo, M. H. Huang, Langmuir 2010, 26, 12307.
[47] T. Ming, W. Feng, Q. Tang, F. Wang, L. Sun, J. Wang, C. Yan, J. Am. Chem. Soc. 2009, 131, 16350.
[48] O. M. Bakr, B. H. Wunsch, F. Stellacci, Chem. Mater. 2006, 18, 3297.
[49] Ha, T. H., Koo, H.-J., Chung, B. H., J. Phys. Chem. C 2007,111, 1123.