研究生: |
張右琛 Chang, You-Chen |
---|---|
論文名稱: |
以實驗規畫法優化高功率脈衝磁控濺鍍製備之釔安定二氧化鋯薄膜製程 Using Design of Experiment to Optimize Deposition Processing of YSZ Thin Films by High Power Impulse Magnetron Sputtering |
指導教授: |
黃嘉宏
Huang, Jia-Hong 喻冀平 Yu, Ge-Ping |
口試委員: |
林郁洧
Lin, Yu-Wei 董曉明 Tung, Hsiao-Ming |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 80 |
中文關鍵詞: | 高功率脈衝磁控濺鍍 、釔安定二氧化鋯 、透明硬膜 、室溫鍍膜 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的為利用田口實驗規劃法優化高功率脈衝磁控濺鍍製備之釔安定二氧化鋯(YSZ)薄膜製程,並探討使用雙靶 (Zr與Y純金屬靶) 鍍至YSZ薄膜於玻璃基板之可行性。一般來說,在鍍製YSZ薄膜時大都是使用Zr/Y合金靶並通入氧氣,然而本研究中使用雙靶並試圖藉由改變釔靶功率進而影響薄膜成分。在高功率脈衝磁控濺鍍雙靶系統中,為了使製程最佳化,選取四個主要的製程參數包含r.f電子槍功率、占空比、基板偏壓及基板溫度,並選用薄膜之硬度與光穿透率做為指標性質。在薄膜鍍著完成後,先利用X光繞射(XRD)與X射線光電子能譜儀(XPS)來確認薄膜晶體結構與成份比,結果顯示出立方晶二氧化鋯與單斜方晶二氧化鋯之繞射峰皆出現在XRD繞射圖中,而根據XPS結果,釔的鍵結能是有被偵測到的,且其含量隨著靶材功率上升有增加的趨勢,所以雙靶對於鍍製不同成份比之YSZ薄膜是可行的。用來做為目標品質特性的薄膜硬度和光穿透率則分別利用奈米壓痕儀(NIP)和光譜儀來量測,接著利用平均數分析(ANOM)和變異數分析(ANOVA)來得到製程敏感參數及預測最佳化鍍膜製程的條件。經以上統計分析結果發現影響薄膜硬度與光穿透率之敏感參數皆為佔空比與基板溫度,且由田口實驗規畫法得到具有最高硬度和最高光穿透率YSZ薄膜之製程條件只差在佔空比,其值分別為: 50/750與50/1250,其他條件則皆為: 靶材功率為120W、基板偏壓為0V和基板溫度為150oC,經由確認實驗結果發現硬度相較於光穿透率為較優之特性指標,但其驗證組中之硬度與光穿透率值皆在預測範圍內,所以兩者皆適合做為特性指標。最後比較田口實驗組與確認實驗組可以發現到在室溫下已經可以成功鍍製出具有緻密微結構且不錯硬度與光穿透率之YSZ薄膜
The purpose of this study is to optimize the process of yttria-stabilized zirconia (YSZ) thin film deposition by high-power impulse magnetron sputtering with the use of the Taguchi design of experiment (DOE) method and to explore the feasibility of depositing YSZ film on a glass substrate by double targets (Zr with high-power impulse magnetron sputtering [HIPIMS], Y with r.f). In general, most YSZ films are deposited by using a Zr/Y alloy target. However, in this study, we attempted to influence the composition of YSZ thin film by controlling the r.f gun power. To optimize the process in the HIPIMS system, four main process parameters were selected, namely, r.f gun power, on/off ratio, substrate bias, and substrate temperature. The hardness and transmittance of YSZ films were selected as index properties. After the deposition, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were performed to confirm the crystal structure and chemical composition of the YSZ films. Results showed that the diffraction peaks of both cubic zirconia (c-ZrO2) and monoclinic zirconia (m-ZrO2) appear in the XRD diffraction pattern. According to the XPS results, the binding energy of yttrium was detected, and an increasing trend of yttrium content was observed as the target power increased. Therefore, dual targets were feasible for depositing different compositions of YSZ films on glass substrate. The films’ hardness and transmittance were measured by using a nanoindenter and a spectrometer, respectively. Then, analysis of mean and analysis of variance were conducted to obtain the sensitive parameters and predict the conditions of the optimized coating process. Statistical analysis results indicate that the sensitive parameters that affect hardness and transmittance were on/off ratio and substrate temperature. The process conditions with the highest hardness and the highest transmittance obtained by the Taguchi DOE method differed only in the on/off ratio, and the values were 50/750 and 50/1250, respectively. Other conditions were the following: target power = 120 W, substrate bias = 0 V, and substrate temperature = 150 °C. Experimental results indicate that hardness is superior to transmittance as an index property. However, the values of hardness and transmittance in the verification group were within the predicted range, thereby making them suitable as index properties. However, unlike with the Taguchi experimental group and the confirmation experimental group, crystalline YSZ film with good hardness and transmittance could be successfully deposited at room temperature by the HIPIMS system. Finally, a comparison between the Taguchi experimental group and the confirmation experimental group indicated that YSZ thin films with a dense microstructure and good hardness and transmittance can be successfully deposited at a relatively low temperature or even room temperature.
[1] E.C Subbarao, Zironia- an overview, Adv. Ceram., 3 (1981) 1-24
[2] K. Tanabe, T. Yamaguchi, Acid-base bifunctional catalysyis by ZrO2 and its mixed oxides, Catal. Today, 20(1994) 185-197
[3] D.R Clarke, C.G Levi, Materals Design For The Next Generation Thermal Barrier Coatings, Annu. Rev. Mater. Res., 33 (2003) 383-417
[4] A. Lubig, Ch. Buchal and D. Guggi, C. L. Jia, B. Stritzker, Epitaxial growth of monoclinic and cubic ZrO2 on Si(100) without prior removal of the native SiO2, Thin Solid Films 217 (1992) 125-128
[5] A.S Kao, C. Hwang, Microstructure of yttria-stabllized zirconia overcoats for thin film recoding media, Sci. Technol. 8 3289 (1990)
[6] Jun-Fu Liu, Corina Nistorica, Igor Gory, George Skidmore, Fadziso M. Mantiziba, Bruce E. Gnade, Layer by layer deposition of ziconium oxide films from aqueous solutions for friction reduction in silicon-based microelectromechanical system devices, Thin Solid Films 492 (2005) 6-12.
[7] J-W. Lee, A.K. Stamper, D.W. Greve, T.E. Schlesinger, M. Migliuolo, D.E. Laughlin, Characterization of yttria-stabilized zirconium oxide buffer layers for high-temperature superconductor thin films, J. Appl. Phys. 64 6502 (1988)
[8] W.H. Lowdermilk, D. Milam, F. Rainer, Optical coatings for laser fusion applications, Thin Solid Films 73 (1980) 1155
[9] H. Fukumoto, M. Monita, Y. Osaka, Electrical characteristics of metal-insulator- semiconductor diodes with ZrO2/SiO2 dielectric films, J. Appl. Phys. 65 (1989) 5210
[10] G. Fareges, E. Beauprez, M.C. Sainte Catherine, Crystallographic structure of sputtered cubic δ-VNx films: influence of basic depostion parameters, Surf. Coat. Technol., 61 (1993) 238-244
[11] J-H. Huang, Y.-P. Tsai, G.-P. Yu, Effect of processing parameters on the microstructure and mechanical properties of TiN film on stainless steel by HCD ion plating, Thin Soid Films, 355-356 (1999) 440-445.
[12] C.-H. Ma, J.-H. Huang, Haydn Chen, A study of preferred orientation of vanadium nitride and zirconium nitride coatings on silicon prepared by ion beam assisted deposition, Surf. Coat. Technol., 133-134 (2000) 289-294.
[13] H. Gueddaoui, G. Schmerber, M. Abes, M. Guemmaz, J.C. Parlebas, Effects of experimental parameters on the physical properties of non-soichiometric sputtered vanadium nitrides films, Catalysis Today, 113 (2006) 270-274.
[14] W.-J. Chou, C.-H. Sun, G.-P. Yu, J.-H. Huang, Optimization of the deposition process of ZrN and TiN thin films on Si(1 0 0) using design of experiment method, Master. Chem. Phys., 82 (2003) 228-236
[15] C.-K. Wu, Master Thesis, Optimization of the Deposition Processing of VN Thin Films by Design of Experiment and Single Variable (Nitrogen Flow Rate) Methods, National Tsing Hua University, Taiwan, (R.O.C), 2016.
[16] J.-H. Huang, K.-W. Lau, G.-P. Yu, Effect of nitrogen flow rate on structure and properties of nanocrystalline TiN thin films produced by unbalanced magnetron sputtering, Surf. Coat. Technol., 191(2005) 17-24.
[17] W.-J. Chou, G.-P. Yu, J.-H. Huang, Bias effect of ion-plated zirconium nitride film on Si(100), Thin Solid Films, 405 (2002) 162-169
[18] J.-H. Huang, C.-H. Ho, and G.-P. Yu, Effect of nitrogen flow rate on the structure and mechanical properties of ZrN thin films on Si(100) and stainless steel substrates, Mater. Chem. Phys., 102 (2007) 31-38.
[19] J.-G. Shim, C.-C. Chao, H. Huang, F.-B. Prinz, Atomic Layer Deposition of Yttria-Stabilized Zirconia for Solid Oxide Fuel Cells, Chem. Mater.,19 (2007) 3850-3854.
[20] J.-S. Lee, T. Matsubara, T. Sei, T. Tsuchiya Preparation and properities of Y2O3-doped ZrO2 thin films by the sol-gel process , Journal of Material Science 32 (1997) 5249-5256.
[21] W.-C. Jungm, J.L. Hertz, H.L. Tuller, Enhanced ionic conductivity and phase meta-stability of nano-sized thin film yttria-doped zirconia (YDZ), Acta Materialia 57 (2009) 1399-1404.
[22] Y.-Y. Chen, W.-C. J, J. Wei, Processing and characterization of ultra-thin yttria-stabilized zirconia (YSZ) electrolytic films for SOFC, Solid State Ionics 177 (2006) 351-357.
[23] M. Ohring, The Material Science of Thin Films, Academic Press, San Diego, 1992, p. 52.
[24] C. Christou, Z.H. Barber, Ionization of sputtered material in a planar magnetron discharge, Journal of Vacuum Science & Technology A: Vacuum, Surface, and films, 18 (2000) 2897-2908.
[25] A.P. Ehiasarian, Y.A. Gonzalvo, T.D. Whitmore, Time-Resolved Ionisation Studies of the High Power Impulse Magnetron Discharge in Mixed Argon and Nitrogen Atmosphere, Plasma Process. Polym., 4 (2007) S309-S313.
[26] S. Konstanitnidis, A. Ricard, M. Ganciu, J.P. Dauchot, C. Ranea, M. Hecq, Measurement of ionic and neutral densities in amplified magnetron discharges by pulsed absorption spectroscopy, J. Appl. Phys., 95 (2004) 2900-2905.
[27] I. Petrov, L. Hultman, J.E. Sundgren, J.E. Greene, Polycrystalline TiN films deposited by reactive bias magnetron sputtering- Effects of ion bombardment on resputtering rates, film composition, and microstructure, J. Vac. Sci. Technol. A-Vac. Surf. Films, 10 (1992) 265-272.
[28] J.P. Zhao, X. Wang, Z.Y. Chen, S.Q. Yang, T.S. Shi, X.H. Liu, Overall energy model for preferred growth of TiN films during filtered arc deposition, J. Phys. D-Appl. Phys., 30 (1997) 5-12.
[29] Y.M. Chen, G.P. Yu, J.H. Huang, Role of process parameters in the texture evolution of TiN films deposited by hollow cathode discharge ion plating, Surf. Coat. Technol., 141 (2001) 156-163.
[30] Y.M. Chen, G.P. Yu, J.H. Huang, Characterizing the effects of multiprocess parameters on the preferred orientation of TiN coating using a combined index, Vacuum, 66 (2002) 19-25.
[31] W.J. Chou, G.P. Yu, J.H. Huang, Bias effect of ion-plated zirconium nitride film on Si(100), Thin Solid Films, 405 (2002) 162-169.
[32] I. Petrov, P.B. Barna, L. Hultman, J.E. Greene, Microstructure evolution during film growth, Journal of Vacuum Science & Technology A, 21 (2003) S117-S128.
[33] H.M. Tung, J.H. Huang, D.G. Tsai, C.F. Ai, G.P. Yu, Hardness and residual stress in nanocrystalline ZrN films: Effect of bias voltage and heat treatment, Mater. Sci. Eng. A-Struct. Mater. Prob. Microstruct. Process., 500 (2009) 104-108.
[34] V. Kouznetsov, K. Macak, J.M. Schneider, U. Helmersson, I. Petrov, A novel pulsed magnetron sputter technique utilizing very high target power densities, Surf. Coat. Technol. 122, 290 (1999).
[35] U. Helmersson, M. Lattemann, J. Bohlmark, A.P. Ehiasarian, J.T. Gudmundsson, Ionized physical vapor deposition (IPVD): A review of technology and applications, Thin Solid Films. 513 (2006) 1-24.
[36]K. Sarakinos, J. Alami, S. Konstantinidis, High power pulsed magnetron sputtering: A review on scientific and engineering state of the art, Surf. Coat. Technol., 204 (2010) 1661-1684.
[37] J.T. Gudmundsson, Ionized physical vapor deposition (IPVD): magnetron sputtering discharges, Journal of Physics: Conference Series, 100 (2008) 082002.
[38] J.T. Gudmundsson, J. Alami, U. Helmersson, Evolution of the electron energy distrubution and plasma parameters in a pulsed magnetron discharge, Appl. Phys. Lett., 78 (2001) 3427-3429.
[39] J.T. Gudmundsson, J. Alami, U. Helmersson, Spatial and temporal behavior of the plasma parameters in a pulsed magnetron discharge, Surface and Coatings Technology 161 (2002) 249-256.
[40] J. Bohlmark, J.T. Gudmundsson, J. Alami, M. Latteman, U. Helmersson, Spatial electron density distribution in a high-power pulsed magnetron discharge, IEEE Trans. Plasma Sci., 33 (2005) 346-347.
[41] S.M. Rossnagel, H.R. Kaufman, Langmuir probe characterization of magnetron operation, Journal of Vacuum Science & Technology A: Vacuum, Surface, and Films, 4 (1986) 1822-1825.
[42] P. Sigurjonsson, J.T. Gudmundsson, Plasma parameters in a planar dc magnetron sputtering discharge of argon and krypton, Journal of Physics: Conference Series, 100 (2008) 062018.
[43] T.E. Sheridan, M.J. Goeckner, J. Goree, Observation of two-temperature electrons in a sputtering magnetron plasma, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 9 (1991) 688-690.
[44] J. Bohlmark, M. Latteman, J.T. Gudmundsson, A.P. Ehiasarian, Y.A. Gonzalvo, N. Brenning, U. Helmersson, The ion energy distributions and ion flux composition from a high power impulse magnetron sputtering discharge, Thin Solid Films, 515 (2006) 1522-1526.
[45] J. Andersson, A.P. Ehiasarian, A. Anders, Observation of Ti(4+) ions in a high power impulse magnetron sputtering plasma, Appl. Phys. Lett., 93 (2008) 071504.
[46] P.R. Ward, B.M. DeKoven, R.E. Weiss, D.J. Christie, R.A. Scholl, W.D. Sproul, F. Tomasel, A. Anders, Proceedings of the 46th Annual Technical Conference Proceedings of the Society of Vacuum Coaters, San Francisco, CA, USA, May 3-8 2003, p. 158.
[47] A.P Ehiasarian, J.G. Wen, I. Petrov, Interface microstructure engineering by high power impulse magnetron sputtering for the enhancement of adhesion, J. Appl. Phys., 101 (2007).
[48] A.H. Heuer, M. Ruhle, in: N. Claussen, M. Ruhle, A.H. Heuer (Eds.), Advances in ceramics, Science and Technology of Zirconia II, vol. 12, American Ceramic Society, Columbus, OH, 1984.
[49] J. Abriata, J. Garce, R. Versaci, The O-Zr (Oxygen-Zirconium) system, J. Phase Equil., 7, (1986) 116.
[50] P.Li, I.W. Chen, J.E. Penner-Hahn, X-ray-absorption studies of zirconia polymorphs. I. Characteristic structures, Phys. Rev. B 48 (1993) 10063-10073.
[51] F.C. Nonamakerm, Chem. Met. Eng., 31 (1924) 151.
[52] P. Li, I.W Chen, J.E. Penner-Hahn, Effect of dopants on zirconia stabilization-an X-ray absorption study: I, trivalent dopants, J, Am. Ceram. Soc. 77 (1994) 118-128.
[53] Y.B. Cheng, D.P. Thompson, Role of anion vacancies in nitrogen-stabilized zirconia, J. Am. Ceram. Soc. 76 (1993) 683-688.
[54] JCPDS file 89-9066.
[55] JCPDS file 89-7710.
[56] JCPDS file 89-9069.
[57] W.A. Roth, G. Becker, Thermochemical revisions, Z. Physik. Chem. A, 145 (1929) 461-469.
[58] O. Ruff, F. Ebert, Refractory ceramics: 1, the forms of zirconia dioxide, Z. Anorg. Allgem. Chem. 180 (1929) 19-41.
[59] L. Passerini, Isomorphism among oxides of different tetravalent metals: CeO2-ThO2; CeO2-ZrO2; CeO2-HfO2, Gazz. Chim. Ital., 60 (1930) 762.
[60] F.C. Nonamaker, Technology of zirconium and its compounds, Chem. Met. Eng. 31 (1924) 151-155.
[61] K. Maca, H. Hadraba, J. Cihlar, Electrophoretic deposition of alumina and zirconia: I. Single-component systems, Ceram. Int. 30 (2004) 843-851.
[62] B. Hatton, P.S. Nicholson, Design and fracture of layered Al2O3/TZ3Y composites produced by electrophoretic deposition, J. Am. Ceram. Soc. 84 (2001) 571-576.
[63] J.F. Shackelford, W. Alexander, CRC Materials Science and Engineering Handbook, third ed., CRC Press, Boca Raton, 2001.
[64] C.B. Alcock, K.T. Jacobk, S. Zador, Zirconium: Physicochemical Properties of its Compounds and Alloys, International Atomic Energy Agency, Vienna, 1976.
[65] A. Hidaka, J. Nakamura, J. Sugimoto, Influence of thermal properties of zirconia shroud on analysis of PHEBUS FPT0 bundle degradation test with ICARE2 code, Nucl. Eng. Des. 168 (1997) 361-371.
[66] F. Cernuschi, S. Ahmaniemi, P. Vuoristo, T. Mäntylä, Modelling of thermal conductivity of porous materials: application to thick thermal barrier coatings, J. Eur. Ceram. Soc. 24 (2004) 2657-2667.
[67] S. Venkataraj, O. Kappertz, H. Weis, R. Jayavel, M. Wutting, Structural and optical properties of thin zirconium oxide films prepared by reactive direct current magnetron sputtering, J. Appl. Phys. 92 (2002) 3599-3607.
[68] Z.W. Zhao, B.K. Tay, G.Q. Yu, S.P. Lau, Optical properties of filtered cathodic vacuum arc-deposited zirconium oxide thin films, J. Phys.: Condens. Matter 15 (2003) 7707-7715.
[69] X.J. Chen, K.A. Khor, S.H. Chan, L.G. Yu, Influence of microstructure on the ionic conductivity of yttria-stabilized zirconia electrolyte, Mater. Sci. Eng., A 335 (2002) 246-252.
[70] B. Králik, E.K. Chang, S.G. Louie, Structural properties and quasiparticle band structure of zirconia, Phys. Rev. B: Condens. Matter Mater. Phys. 57 (1998) 7027-7036.
[71] C.S. Hwang, H.J. Kim, Deposition and characterization of ZrO2 thin films on silicon substrate by MOCVD, J. Mater. Res. 8 (1993) 1361-1367.
[72] S. Sønderby, A. Aijaz, U. Helmersson, K. Sarakinos, P. Eklund, Surf. Coat. Technol. 240 (2014) 1-6.
[73] J. Kondoh, H. Shiota, K. Kawachi, T. Nakatani, Yttria concentration dependence of tensile strength in yttria-stabilized zirconia, J .Alloys. Compd 365 (2004) 253-258.
[74] T. Sakuma, Y.I. Yoshizawa, The microstructure and mechanical properties of yttria-stabilized zirconia prepared by arc-melting, J. Mater. Sci 20 (1985) 2399-2407.
[75] M. Fujikane, D. Setoyama, S. Nagao, R. Nowak, S. Yamanaka, Nanoindentation examination of yttria-stabilized zirconia (YSZ) crystal, J. Alloys. Compd 431 (2007) 250-255.
[76] Y. Kanno, Stability of metastable teragonal ZrO2 in compound powders and nucleation arguments, J. Mater. Sci. 25 (1990) 1987-1990.
[77] S. Heiroth, R. Ghisleni, T. Lippert, J. Michler, A. Wokaun, Optical and mechanical properties of amorphous and crystalline yttria-stabilized zirconia thin films prepared by pulsed laser deposition, Acta Materialia 59 (2011) 2330-2340.
[78] Y.M. Chiang, D. Birnie, III, W.D. Kingery, PHYSICAL CERAMICS, Principles for Ceramic Science and Engineering, John Wiley & Sons, New York, 1997.
[79] P. Floratos, A. Goulas, Martensitic transformation analysis and transformation toughness on zirconia (ZrO2) ceramics.
[80] M. Boulouz, A. Boulouz, A. Giani, A. Boyer, Influence of substrate temperature and target composition on the properties of yttria-stabilized zirconia thin films grown by r.f reactive magnetron sputtering, Thin Solid Films 323 (1998) 85-92
[81] H. Tomaszewski, J. Haemars, J. Dnul, N.D. Roo, R.D. Gryse, Yttria stabilized zirconia thin films grown by reactive r.f magnetron sputtering, Thin Solid Films 287 (1996) 104-109.
[82] G. Gu, X. Liu, J. Tang, Damage thresholds of (ZrO2-Y2O3)/SiO2 reflectors used for XeCl lasers, Appl. Opt. 32 (9) (1993) 1528-1530.
[83] M.S. Phadke, Quality Engineering Using Robust Design, Prentice-Hall, Englewood Cliffs, New Jersey 1989.
[84] P. Scherrer, Bestimmung der Grösse und der inner Struktur von Kolloidteilchen mittels Röntgenstrahlen, Gött. Nachr., 2 (1918) 98-100.
[85] L.V. Azároff, M.J. Buerger, The powder method in X-ray crystallography, McGraw-Hill, 1958.
[86] D.A. Shirley, High-resolution X-ray photoemission spectrum of the valence bands of gold, Phys. Rev. B, 5 (1972) 4709-4714.
[87] C. Morant, J.M. Sanz, L. Galán, L. Soriano, F. Rueda, An XPS study of the interaction of oxygen with zirconium, Surf. Sci. 218 (1989) 331-345.
[88] M. Matsuoka, S. Isotani, W. Sucasaire, N. Kuratani, K. Ogata, X-ray photoelectron spectroscopy analysis of zirconium nitride-like films prepared on Si(100) substrates by ion beam assisted deposition, Surf. Coat. Technol. 202 (2008) 3129-3135.
[89] I. Milošev, H.H. Strehblow, M. Gaberšček, B. Navinšek, Electrochemical oxidation of ZrN hard (PVD) coatings studied by XPS, Surf. Interface Anal. 24 (1996) 448-458.
[90] M. Del Re, R. Gouttebaron, J.P. Dauchot, P. Leclère, G. Terwagne, M. Hecq, Study of ZrN layers deposited by reactive magnetron sputtering, Surf. Coat. Technol., 174-175 (2003) 240-245.
[91] J. Chastain, J.F. Moulder, Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, Physical Electronics Division, Perkin-Elmer Corp, Minnesota, 1992.
[92] G. Bakradze, L.P.H. Jeurgens, E.J. Mittemeijer, The different initial oxidation kinetics of Zr(0001) and Zr(101 ̅0) surfaces, J. Appl. Phys. 110 (2011) 024904.
[93] A. Lyapin, L.P.H. Jeurgens, P.C.J. Graat, E.J. Mittemeijer, Ellipsometric and XPS study of the initial oxidation of zirconium at room temperature, Surf. Interface Anal. 36 (2004) 989-992.
[94] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992) 1564-1583
[95] G.G. Stoney, The tension of metallic films deposited by electrolysis, Proc. Roy. Soc. Lond. A Mat., 82 (1909) 172-175.
[96] W. Nix, Mechanical properties of thin films, Metall. Trans. A, 20 (1989) 2217-2245.