簡易檢索 / 詳目顯示

研究生: 陳建華
Jian-Hua Chen
論文名稱: 奈米碳管網絡場效應電晶體之製備與量測
Fabrication and Measurement of Carbon Nanotube Network Field-Effect Transistors
指導教授: 邱博文
Po-Wen Chiu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 67
中文關鍵詞: 奈米碳管奈米碳管網絡場效應電晶體
外文關鍵詞: carbon nanotube, carbon nanotube network, field-effect transistor
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米碳管有著獨特的結構與優秀的電子特性,但是奈米碳管因其本身為奈米級的尺度,所以在製程上需要精確地被定位,無形中增加了奈米碳管電晶體元件製程的難易與時間,因此產生了將奈米碳管以隨機雜亂排列出來的奈米碳管網絡場效應電晶體。奈米碳管網絡可適用塗佈或轉印於任何的基板材料上,且奈米碳管不需精確地被組裝,只需要一般的黃光微影製程,減少元件的製程步驟並提高元件的生產效率,為奈米碳管網絡進入電子開關元件的一大重要利基。
    本論文的第一章中,將從奈米碳管的發現介紹包括至奈米碳管的合成方式、晶格結構、電學特性與奈米碳管在電子元件上的應用。奈米碳管只要分佈的密度適當,彼此交錯的網絡結構就可形成連續的奈米碳管薄膜,所以在論文第二章將介紹常見的奈米碳管網絡製備方法。
    論文第三章將介紹本實驗元件的結構與製程,以SiO2為閘極絕緣層的奈米碳管網絡電晶體製作程序容易且快速,但元件除了閘極施加效率不佳外,也因其背閘極結構無法同時對同一基板上其他的電晶體元件給予不同的閘極電壓,因此不適合用來製作邏輯電路。以Al2O3為閘極絕緣層的奈米碳管網絡電晶體採用局部背閘極結構製作,可在同一基板上各別定義不同元件的閘極,並且適用於邏輯電路,使用介電常數較高的Al2O3材料,可以有效增加閘極施加效率,大幅度降低元件的操作電壓。
    第四章節將介紹奈米碳管網絡場效應電晶體的電性量測設備、量測軟體、 SWCNT/ SiO2元件與SWCNT/ Al2O3元件的電性量測結果,並將Al2O3奈米碳管網絡電晶體以鋁線焊線機作元件電極間的外部連接,進行反相器、反或閘和反及閘的邏輯電路操作。第五章將對本實驗元件的實驗結果作結論分析, 並對未來可能進行的研究工作進行探討。


    1 緒論 4 1.1 奈米碳管的發現 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 奈米碳管之合成 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.1 電弧放電法 (arc discharge method) . . . . . . . . . . . . . . . 6 1.2.2 雷射剝落法 (laser ablation method) . . . . . . . . . . . . . . . 6 1.2.3 化學氣相沈積法 (chemical vapor deposition) . . . . . . . . . . 7 1.3 奈米碳管之結構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 奈米碳管之電學特性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5 奈米碳管在電子元件的應用 . . . . . . . . . . . . . . . . . . . . . . . . 12 2 奈米碳管網絡 16 2.1 奈米碳管網絡之製備 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.1.1 旋轉塗佈法 (spin coating method) . . . . . . . . . . . . . . . . 16 2.1.2 氣槍塗佈法 (air brush method) . . . . . . . . . . . . . . . . . . 17 2.1.3 化學吸附法 (chemical adsorption method) . . . . . . . . . . . . 18 2.1.4 真空過濾法 (vaccum filtration method) . . . . . . . . . . . . . 19 2.1.5 化學氣相沈積法 (chemical vapor deposition) . . . . . . . . . . 20 2.1.6 Langmuir-blodgett deposition . . . . . . . . . . . . . . . . . . 20 2.2 金屬性質與半導體性質奈米碳管之分離 . . . . . . . . . . . . . . . . . . 22 2.2.1 電流崩潰法 (electrical breakdown method) . . . . . . . . . . . 22 2.2.2 化學改性法 (chemical modification method) . . . . . . . . . . . 22 2.2.3 電漿蝕刻法 (plasma etching method) . . . . . . . . . . . . . . 23 2.3 奈米碳管網絡場效應電晶體 . . . . . . . . . . . . . . . . . . . . . . . . 25 2.4 小結 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3 元件結構與製程 30 3.1 前言 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2 元件結構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2.1 以 SiO 為閘極絕緣層之元件結構 . . . . . . . . . . . . . . . . . 31 2 3.2.2 以 Al O 為閘極絕緣層之元件結構 . . . . . . . . . . . . . . . . 33 2 3 3.3 實驗儀器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.4 元件製程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.4.1 SWCNT/SiO 網絡元件之製程 . . . . . . . . . . . . . . . . . . 34 2 3.4.2 SWCNT/Al O 網絡元件之製程 . . . . . . . . . . . . . . . . . 35 2 3 4 電性量測結果與討論 40 4.1 量測儀器與軟體 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.2 奈米碳管網絡電晶體之電性量測 . . . . . . . . . . . . . . . . . . . . . . 43 4.2.1 SWCNT/SiO 網絡元件之量測 . . . . . . . . . . . . . . . . . . 43 2 4.2.2 SWCNT/Al O 網絡元件之量測 . . . . . . . . . . . . . . . . . 48 2 3 4.3 奈米碳管網絡電晶體的應用電路 . . . . . . . . . . . . . . . . . . . . . . 54 4.3.1 反相器 (inverter) . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.3.2 邏輯閘 (logic gate) . . . . . . . . . . . . . . . . . . . . . . . . 56 4.4 小結 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5 結論與未來展望 60

    [1] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, “C :
    60
    Buckminsterfullerene,” Nature, vol. 318, p. 162, 1985.
    [2] S. Iijima, “Helical microtubules of graphite carbon,” Nature, vol. 354, p. 56,
    1991.
    [3] S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,”
    Nature, vol. 363, p. 603, 1993.
    [4] “Carbon nano-tube (CNT) structure,” http://www.anp.com.tw/English/
    main02-a1.htm.
    [5] “Analysis of the production conditions by laser ablation,” http://www.
    ifw-dresden.de/institutes/iff/research/Carbon/CNT/laser-ablation.
    [6] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon
    Nanotubes. Imperial College Press, 1998.
    [7] D. S. Bethune, C. H. Klang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez,
    and R. Beyers, “Cobalt-catalyzed growth of carbon nanotubes with single-
    atomic-layerwalls,” Nature, vol. 363, p. 605, 1993.
    [8] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee,
    S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, “Crystalline ropes of metallic carbon nanotubes,”
    Science, vol. 273, p. 483, 1996.
    [9] R. Seidel, “Carbon nanotube devices,” Ph.D. dissertation, Technischen
    Universit‥at Dresden, 2004.
    [10] J. Kong, A. M. Cassell, and H. Dai, “Chemical vapor deposition of methane
    for single-walled carbon nanotubes,” Chemical Physics Letters, vol. 292, p. 567,
    1998.
    [11] “Nanotube reinforcements,” http://www.isampe.org/arti2.htm.
    [12] “What is a carbon nanotube?” http://www.seas.upenn.edu/mse/research/
    nanotubes.html.
    [13] R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, “Electronic-
    structure of graphene tubules based on C ,” Physical Review B, vol. 46, p.
    60
    1804, 1992.
    [14] P. L. McEuen, M. S. Fuhrer, , and H. Park, “Single-walled carbon nanotube
    electronics,” IEEE Transactions on Nanotechnolgy, vol. 1, p. 78, 2002.
    [15] B. Q. Wei, R. Vajtai, and P. M. Ajayan, “Reliability and current carrying
    capacity of carbon nanotubes,” Applied Physics Letters, vol. 79, p. 1172, 2001.
    [16] A. P. Graham, G. S. Duesberg, R. V. Seidel, M. Liebau, E. Unger, W. Pamler,
    F. Kreupl, and W. Hoenlein, “Carbon nanotubes for microelectronics?” Small,
    vol. 4, p. 382, 2005.
    [17] R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and P. Avouris, “Single- and
    multi-wall carbon nanotube field-e?ect transistors,” Applied Physics Letters,
    vol. 73, p. 2447, 1998.
    [18] S. Tans, S. Verschueren, and C. Dekker, “Room temperature transistor based
    on a single carbon nanotube,” Nature, vol. 393, p. 49, 1998.
    [19] J. Appenzeller, J. Knoch, V. Derycke, R. Martel, S. Wind, and P. Avouris,
    “Field-modulated carrier transport in carbon nanotube transistors,” Physical
    Review Letters, vol. 89, p. 126801, 2002.
    [20] A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, “Logic circuits with
    carbon nanotube transistors,” Science, vol. 294, p. 1317, 2001.
    [21] A. Javey, H. Kim, M. Brink, Q. Wang, A.Ural, J.Guo, P.Mcintyre, P.Mceuen,
    M. Lundstrom, and H. Dai, “High-k dielectrics for advanced carbon nanotube
    transistors and logic gates,” Nature Materials, vol. 1, p. 241, 2002.
    [22] M. A. Meitl, Y. Zhou, A. Gaur, S. Jeon, M. L. Usrey, M. S. Strano, and J. A.
    Rogers, “Solution casting and transfer printing single-walled carbon nanotube
    films,” Nano Letters, vol. 4, p. 1643, 2004.
    [23] M. Kaempgen, G. S. Duesberg, and S. Roth, “Transparent carbon nanotube
    coatings,” Applied Surface Science, vol. 252, p. 425, 2005.
    [24] E.Artukovic,M.Kaempgen,D.S.Hecht,S.Roth,andG.Gruner,“Transparent
    and flexible carbon nanotube transistors,” Nano Letters, vol. 5, p. 757, 2005.
    [25] M. Burghard, G. Duesberg, G. Philipp, J. Muster, and S. Roth, “Controlled
    adsorption of carbon nanotubes on chemically modified electrode arrays,” Ad-
    vanced Materials, vol. 10, p. 584, 1998.
    [26] Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras,
    J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent,
    conductive carbon nanotube films,” Science, vol. 305, p. 1273, 2004.
    [27] L. Hu, D. S. Hecht, and G.Gruner, “Percolation in transparent and conducting
    carbon nanotube networks,” Nano Letters, vol. 4, p. 2513, 2004.
    [28] R. Seidel, A. P. Graham, E. Unger, G. S. Duesberg, M. Liebau, W. Stein-
    hoegl, F. Kreupl, and W. Hoenlein, “High-current nanotube transistors,” Nano
    Letters, vol. 4, p. 831, 2004.
    [29] Y.Kim, N.Minami, W.Zhu, S.Kazaoui, R.Azumi, andM.Matsumoto, “Lang-
    muirblodgett films of single-wall carbon nanotubes: Layer-by-layer deposition
    and in-plane orientation of tubes,” Jpn. J. Appl. Phys., vol. 42, p. 7629, 2003.
    [30] P. G. Collins, M. S. Arnold, and P. Avouris, “Engineering carbon nanotubes
    and nanotube circuits using electrical breakdown,” Science, vol. 292, p. 706,
    2001.
    [31] L. An, Q. Fu, C. Lu, and J. Liu, “A simple chemical route to selectively elim-
    inate metallic carbon nanotubes in nanotube network devices,” J. Am. Chem.
    Soc., vol. 126, p. 10520, 2004.
    [32] G. Zhang, P. Qi, X. Wang, Y. Lu, X. Li, R. Tu, S. Bangsaruntip, D. Mann,
    L. Zhang, and H. Dai, “Selective etching of metallic carbon nanotubes by gas-
    phase reaction,” Science, vol. 314, p. 974, 2006.
    [33] R. Martel, H.-S. Wong, K. Chan, and P. Avouris, “Carbon nanotube field e?ect
    transistors for logic applications,” Proc. IEDM 2001, p. 159, 2001.
    [34] V.Derycke, R.Martel, J.Appenzeller, andP.Avouris, “Carbonnanotubeinter-
    and intramolecular logic gates,” Nano Letters, vol. 1, p. 453, 2001.
    [35] V. Derycke, J. Appenzeller, R. Martel, and P. Avouris, “Controlling doping
    and carrier injection in carbon nanotube transistors,” Applied Physics Letters,
    vol. 80, p. 2773, 2002.
    [36] S. J. Wind, J. Appenzeller, R. Martel, V. Derycke, and P. Avouris, “Vertical
    scaling of carbon nanotube field-e?ect transistors using top gate electrodes,”
    Applied Physics Letters, vol. 80, p. 3817, 2002.
    [37] M.Zhang,P.C.H.Chan,Y.Chai,Q.Liang,andZ.K.Tang,“Localsilicon-gate
    carbon nanotube field e?ect transistors using silicon-on-insulator technology,”
    Applied Physics Letters, vol. 89, p. 023116, 2006.
    [38] B. M. Kim, T. Brintlinger, E. Cobas, M. S. Fuhrer, H. Zheng, Z. Yu,
    R. Droopad, J. Ramdani, and K. Eisenbeiser, “High-performance carbon nan-
    otube transistors on SrTiO /Si substrates,” Applied Physics Letters, vol. 84, p.
    3
    1946, 2004.
    [39] J. Appenzeller, Y.-M. Lin, J. Knoch, and P. Avouris, “Band-to-band tunneling
    in carbon nanotube field-e?ect transistors,” Physical Review Letters, vol. 93, p.
    196805, 2004.
    [40] M. H. Yang, K. B. K. Teo, L. Ganglo?, W. I. Milne, D. G. Hasko, Y. Robert,
    and P. Legagneux, “Advantages of top-gate, high-k dielectric carbon nanotube
    field-e?ect transistors,” Applied Physics Letters, vol. 88, p. 113507, 2006.
    [41] S. Rosenblatt, Y. Yaish, J. Park, J. Gore, V. Sazonova, and P. L. McEuen,
    “High performance electrolyte gated carbon nanotube transistors,” Nano Let-
    ters, vol. 2, p. 869, 2002.
    [42] T. Ozel, A. Gaur, J. A. Rogers, and M. Shim, “Polymer electrolyte gating of
    carbon nanotube network transistors,” Nano Letters, vol. 5, p. 905, 2005.
    [43] E. S. Snow, J. P. Novak, P. M. Campbell, and D. Park, “Random networks of
    carbon nanotubes as an electronic material,” Applied Physics Letters, vol. 82,
    p. 2145, 2003.
    [44] S.-H. Hur, M.-H. Yoon, A. Gaur, M. Shim, A. Facchetti, T. J. Marks, and
    J. A. Rogers, “Organic nanodielectrics for low voltage carbon nanotube thin
    film transistors and complementary logic gates,” J. Am. Chem. Soc., vol. 127,
    p. 13808, 2005.
    [45] Y. Zhou, A. Gaur, S.-H. Hur, C. Kocabas, M. A. M. M. Shim, and J. A. Rogers,
    “p-channel, n-channel thin film transistors and p-n diodes based on single wall
    carbon nanotube networks,” Nano Letters, vol. 4, p. 2031, 2004.
    [46] S.-H. Hur, C. Kocabas, A. Gaur, O. O. Park, M. Shim, and J. A. Rogers,
    “Printed thin-film transistors and complementary logic gates that use polymer-
    coated single-walled carbon nanotube networks,” J. Appl. Phys., vol. 98, p.
    114302, 2005.
    [47] A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai, “Ballistic carbon
    nanotube field-e?ect transistors,” Nature, vol. 424, p. 654, 2003.
    [48] W. Kim, A. Javey, O. Vermesh, Q. Wang, Y. Li, and H. Dai, “Hysteresis caused
    by water molecules in carbon nanotube field-e?ect transistors,” Nano Letters,
    vol. 3, p. 193, 2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE