簡易檢索 / 詳目顯示

研究生: 王奕勛
Wang, Yi-Syun
論文名稱: 使用奈米碳管承載觸媒於微型甲醇重組反應器設計製造與測試
Design ,Fabrication and Test of methanol micro-reformer supported with CNTs
指導教授: 曾繁根
Tseng, Fang-Gang
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 67
中文關鍵詞: 奈米碳管微型甲醇重組反應器
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 燃料電池前端加裝一個重組器(reformer),利用液態燃料,例如:甲醇、乙醇等富氫燃料經過催化劑催化之後轉成氫氣為其中一種可行的形式。但如何開發一個低溫製氫的反應系統 (120~200℃),使與質子交換膜燃料電池(proton exchange membrane fuel cell,PEMFC)的操作溫度(室溫~200℃)較接近,提高產物的選擇性,減低副產物的產量,一直是重組器與燃料電池銜接的瓶頸。故本研究主旨在於整合成熟之微系統設計製程、奈米碳管製備、以及甲醇催化劑之備置技術等,驗證三項重要之整合技術,包含: 1. 據瑞士卷形狀之微米流道或者是多重進料入口之微米流道與奈米碳管整合之重組反應效能, 2. 甲醇催化劑在奈米碳管上之沈積技術及催化劑之特性分析, 3. 甲醇重組製氫低溫觸媒之溫度與效能驗證。
    研究發現其sol-gel法所製備之觸媒方式比含浸法所製備之觸媒活性較佳。且多重進料入口且流道短之微米流道設計,將比單一進口之微米流道設計有良好之產氫率,最高氫氣產率為其利用sol-gel法製備觸媒於1.5cm長微米流道在250℃所做之測試,可達每分鐘氫氣產生率為2.2*10-6莫耳。而於微米流道中成長奈米碳管所做之測試,因其觸媒負載量之不同,造成其sol-gel法製備觸媒於3cm長之微米流道含奈米碳管,僅有每分鐘1.71*10-6莫耳氫氣產生。然而將其觸媒負載量正規化之後,於相同流道長度條件下,含奈米碳管之微流道將具有較高之甲醇重組反應效能,表示其奈米碳管有助於提供較高之觸媒反應面積使其甲醇重組反應效能提升。


    目錄 中文摘要 i 誌謝 ii 目錄 iii 圖目錄 vi 表目錄 viii 第1章 緒論 1 1.1 前言 1 1.2 燃料電池 1 1.2.1 燃料電池種類 1 1.2.2 燃料電池原理 5 1.3 甲醇重組製氫 7 1.4 文獻回顧 10 1.4.1 Cu/Zn催化劑與甲醇重組反應製氫 10 1.4.2 國外微型重組器發展研究 11 1.5 研究動機與目的 13 1.5.1 研究背景 13 1.5.2 研究方法 14 第2章 實驗設計與製程規劃 17 2.1 第一代瑞士卷形微流道設計 17 2.2 第二代多重進料入口微流道設計 18 2.3 製程流程 20 2.3.1 微流道製備過程 20 2.3.2 奈米碳管成長 24 2.4 觸媒製備(感謝醫環系黃鈺軫助理教授實驗室協助) 24 2.4.1 藥品 24 2.4.2 impregnation法製備觸媒 25 2.4.3 Sol-gel法製備觸媒 26 2.4.4 觸媒反應活性測試架構 28 第3章 實驗成果與討論 30 3.1 第一代瑞士卷形微流道 30 3.2 微流道流場拍攝 30 3.3 impregnation法後甲醇重組觸媒塗佈於silicon基材情形 31 3.4 微流道中成長奈米碳管 34 3.5 於大氣環境中400℃鍛燒4小時後,微流道中奈米碳管情形 34 3.6 impregnation法製備甲醇重組觸媒於平面奈米碳管情形 37 3.7 經由impregnation法製備觸媒第一代甲醇重組反應器效能測試 40 3.8 Sol-gel法製備甲醇重組觸媒於silicon基材情形 42 3.9 sol-gel法製備甲醇重組觸媒於平面奈米碳管情形 42 3.10 成長奈米碳管參數調整 46 3.11 第二代甲醇重組反應器效能測試 51 第4章 結論與未來工作 59 4.1 結論 59 4.2 未來研究方向 59 4.2.1 重複數次比較其多重進料入口不同及流道長度對於甲醇重組效能影響 59 4.2.2 改善觸媒製備方法 59 4.2.3 設計流道長度短且排列密集之多重進料入口流道 60 4.2.4 奈米碳管與不同觸媒製備方法於高溫鍛燒過程不被氧化 60 4.2.5 一體成形設計減低反應單元體積 60 4.2.6 改善於測試環境中,流道熱量散失之影響 61 第5章 Reference 62

    1. G. J. K. Acres, “Recent advances in fuel cell technology and its applications”, Journal of Power Sources 100 (2001) 60–66.
    2. B. D. McNicol, D. A. J. Rand, and K. R. Williams, “Fuel cells for road transportation purposes—yes or no”, Journal of Power Source 100 (2001) 47–89.
    3. G. Cacciola, V. Antonucci, and S. Freni, “Technology update and new strategies on fuel cells”, Journal of Power Sources 100 (2001) 67–79.
    4. 黃鎮江,燃料電池,全華科技圖書股份有限公司
    5. 劉毅弘、顏貽乙、金順志、呂志興、陳政群、黃家銘、曾善訓,”燃料電池微小型重組器及一氧化碳轉化技術探討”,工業技術研究院
    6. D.S. Watkins, in: L.J.M.J. Blomen, M.N.Mugerwa (Eds.), Fuel Cell Systems, Plenum Press, New York (1993) p.493.
    7. H. Kahrom, Proceedings of the European Fuel cell Forum Portable Fuel cell conference, Lucerne (1999) 159.
    8. B. Lindstrom, L.J. Pettersson, “Hydrogen generation by steam reforming of methanol over copper-based catalysts for fuel cell applications”, Int. J. Hydrogen Energy 26 (2001) 923933.
    9. T. Takahashi, M. Inoue, T. Kai, “Effect of metal composition on hydrogen selectivity in steam reforming of methanol over catalysts prepared form amorphous alloys”, Appl. Catal. A 218 (2001) 189-195.
    10. Z. F. Wangm, J. Y. Xi, W. P. Wang, G. X. Lu, J., “Selective production of hydrogen from partial oxidation of methanol over silver catalysts at low temperatures“, J. Mol. Catal. A: Chemical, 191 (2003) 123-136.
    11. S. Schuyten, E.E. Wolf, “Selective combinatorial studies on Ce and Zr promoted Cu/Zn/Pd catalysts for hydrogen production via methanol oxidative reforming” Catal. Lett. 106 (2006) 7-14.
    12. L. Mo, X. Zheng, C.T. Yeh, “Selective production of hydrogen from partial oxidation of methanol over silver catalysts at low temperatures”, Chem. Commun. (2004) 1426-1427.
    13. S. Velu, K. Suzuki, “Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl oxide catalysts: effect of substitution of zirconium and cerium on the catalytic performance”, Top. Catal. 22 (2003) 235-244.
    14. T. Shishido, Y. Yamamoto, H. Morioka, K. takehira, “production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation: Steam reforming and oxidative steam reforming”, J. Mol. Catal. A: Chem. 268 (2007) 185-194.
    15. B. Emonts, J. B. Hansen, S. L. Jorgensen, B.Höhlein, R. Peters, J. Power Sources, 71 (1998) 288.
    16. F. Boccuzzi, A. Chiorino, M. Manzoli, D. Andreeva, T. Tabakova, L.Ilieva, V. Iadakiev, Catal. Today, 75 (2002) 169.
    17. G. Avgouropoulos, T. Ioannides, “Selective CO oxidation over CuO-CeO2 catalysts prepared via the urea-nitrate combustion method”, Appl. Catal. A-Gen., 244 (2003) 155-167.
    18. A. J. Dyakonov, “Abatement of CO from relatively simple and complex mixtures – I. Oxidation on Pd-Ag/zeolite catalysts”, Appl. Catal. B-Environ., 45 (2003) 241-309.
    19. B. Qiao, Y. Deng, “Highly effective ferric hydroxide supported gold catalyst for selective oxidation of CO in the presence of H2” Chem. Comm., (1997) 2192-2193.
    20. Y. F. Han, M. Kinne, R. J. Behm, “ Selective oxidation of CO on Ru/ gamma-Al2O3 in methanol reformate at low temperatures“, Appl. Catal. B-Environ. 52 (2004) 123-134.
    21. S. Schuyten, P. Dinka, A. S. Mukasyan, E. Wolf, “A Novel Combustion Synthesis Preparation of CuO/ZnO/ZrO2/Pd for Oxidative Hydrogen Production from Methanol”, Catal. Lett. 121 (2008) 189-198.
    22. S. Liu., K. Takahashi, H. Eguchi, K. Uematsu, “Hydrogen production by oxidative methanol reforming on Pd/ZnO: Catalyst preparation and supporting materials”, Catal. Today 129 (2007) 287-292.
    23. J. Agrell, H. Birgersson, M. Boutonnet, I. Melian-Cabrera, R.M. Navarro, J. L. G Fierro., “Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3”, J. Catal. 219 (2003) 389-403
    24. R. M. Navarro, M. A. Pena, and J. L. G. Fierro, “Hydrogen production reactions from carbon feedstocks: Fossils fuels and biomass”, Chem. Rev. 107 (2007) 3952-3991
    25. S. Velu, K. Suzuki, T. Osaki, Catal. Lett., 62 (1999) 159
    26. Z. Wang, W. Wang, G. Lu, “Studies on the active species and on dispersion of Cu in Cu/SiO2 for hydrogen production via methanol partial oxidation”, Int. J. Hydrog. Energy. 28 (2003) 151-158
    27. T. Terazaki, M. Nomura, K. Takeyama, O. Nakamura, T. Yamamoto, “Development of multi-layered microreactor with methanol reformer for small PEMFC”, J. Power Sources 145 (2005) 691-696.
    28. Y. Kawamura, K. Yamamoto, N. Ogura, T. Katsumata, A. Igarashi, “Preparation of Cu/ZnO/Al2O3”, J. Power Sources 150 (2005) 20-26.
    29. Y. Kawamura, N. Ogura, T. Yamamoto, A. Igarashi, “A miniaturized methanol reformer with Si-based microreactor for a small PEMFC”, Chemical engineering science 61 (2006) 1092-1101.
    30. H. M. Yang and P. H Liao, “Preparation and activity of Cu/Zno-CNTs nano-catalyst on steam reforming of methanol”, App. Catalysis, General 317 (2007) 226-233.
    31. R. W. Lee and S. J. Kim,”Reformer for Fuel Cell,Pub”. No. US20070071661, Pub. Date Mar.29,2007
    32. Y. Men, G. Kolb, R. Zapf, D. Tiemann, M. Wichert, V. Hessel, H. Löwe, “A complete miniaturized microstructured methanol fuel processor/fuel cell system for low power applications’, Int. J. hydrogen energy 33 (2008) 1374-1382.
    33. G. G. Park, S. D. Yim, Y. G. Yoon, C. S. Kim, D. J. Seo, K. Eguchi , “Hydrogen production with integrated microchannel fuel processor using methanol for portable fuel cell systems”, Catalysis Today 110 (2005) 108-113.
    34. T. Kim, S. Kwon, “Catalyst preparation for fabrication of a MEMS fuel reformer”, Chemical Engineering Journal 123 (2006) 93-102.
    35. O. J. Kwon, S. M. Hwang, J. G. Ahn, J. J. Kim, “ Silicon-based miniaturized-reformer for portable fuel cell applications”, J. Power Sources 156 (2006) 253-259.
    36. O. J. Kwon, S. Hwang, I. K. Song, H. Lee, J. J. Kim, “A silicon-based miniaturized reformerfor high power electric devices“, Chemical Engineering Journal 133 (2007) 1577-163.
    37. J. Hu, Y. Wang, D. V. Wiel, C. Chin, D. Palo, R. Rozmiarek, R. Dagle, J. Cao, J. Holladay, E. Baker, “Fuel processing for porable power applications“, Chem. Engineering Journal 93 (2003) 55-60.
    38. F. Joensen, and J. R. Rostrup-Nielsen, “Conversion of hydrocarbons and alcohols for fuel cells”, J. Power Sources, 105(2002) 195.
    39. C. R. Manns, and C. E. Taylor, Furl Chemistry Division Perprints, 46(2001) 6.
    40. D. J. Moon, and K. Sreekumar, S. D. Lee, B. G. Lee, H. S. Kim, Appl. Catal. A-Gen., 215(2001) 1.
    41. P. Ekdunge, and M. Råberg, “The Fuel Cell Vehicle - Analysis of Energy use, Emissions and Cost.” , Int. J. Hydrogen Energy, 23(1998) 381.
    42. A. K. Shukla, P. A. Christensen, A. Hamnett, and M. P. Hogarth, J. Power Sources, 55(1995) 87.
    43. G.G. Scherer, “Interfacial aspects in the development of polymer electrolyte fuel cells”, Solid State Ionics, 94(1997) 249.
    44. B. Linström, and L. J. Pettersson, “Deactivation of copper-based catalysts for fuel-cell applications”, Catal. Lett., 74(2001) 27.
    45. D. Wasington, V. Duchenois, R. Polaert, R.M. Beasley, “Technology of Channel Plate Manufacture.”, Acta Electronica 14(1971) 201.
    46. H. Takahashi; S.Numao, S. Bandow; S. Iijima, “AFM imaging of wrapped multiwall carbon nanotube in DNA” , Chem. Phys. Lett. 418 (2006)535.
    47. D. Park, T. Kim, S. Kwon, C. Kim, E. Yoon, “Micromachined methanol steam reforming system as a hydrogen supplier for portable proton exchange membrane fuel cells”, Sensors and Actuators A 135 (2007) 58–66.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE