簡易檢索 / 詳目顯示

研究生: 林建竹
Lin, Chien-Chu
論文名稱: 1.台灣眼鏡蛇毒金屬蛋白水解酵素與 αvβ3整合素結合模式之研究 2. LonA蛋白水解酵素晶體結構分析
2.Binding model analysis of snake venom metalloproteinase/αvβ3 integrin complex 2. Crystal structure of the LonA AAA+ protease
指導教授: 吳文桂
Wu, Wen-Guey
口試委員: 鄭惠春
Cheng, Hui-Chun
張崇毅
Chang, Chung-I
簡昆鎰
Chien, Kun-Yi
黃維寧
Huang, Wei-Ning
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 112
中文關鍵詞: 蛇毒蛋白金屬蛋白水解酵素整合素傷口癒合蛋白水解三磷酸腺苷水解異位性調控
外文關鍵詞: AAA+ protease, pore loops, LonA, ATPase cycle
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一部分:台灣眼鏡蛇毒金屬蛋白水解酵素與αvβ3整合素結合模式之研究
    我們實驗室先前從台灣眼鏡蛇毒中純化出兩種個別採取不同結構型態(C and I 型態)的蛇毒金屬蛋白水解酵素,分別是atragin 和Kaouthiagin-like。這兩種蛇毒金屬蛋白水解酵素的結構及序列都包含了金屬水解酵素區域、去整合素相似區域、多半胱氨酸區域,是屬於PIII 類型的蛇毒金屬蛋白水解酵素。在此,我們將探討此兩種台灣眼鏡蛇蛇毒金屬蛋白水解酵素在抑制傷口癒合的過程中扮演的角色。我們發現C 型態不含RGD氨基酸序列的atragin與αvβ3 整合素的結合親和力是比I 型態且含RGD氨基酸序列的Kaouthiagin-like與αvβ3整合素的親和力的十倍。而atragin是採取一種新穎的結合模式和整合素結合,這結合模式主要是透過atragin的金屬水解酵素區域以及在半胱氨酸區域上的RRN氨基酸序列。在細胞貼附實驗中,顯示纖維母細胞主要是透過細胞上的αvβ3整合素與atragin結合貼附。再更進一步的傷口癒合實驗中發現atragin可以透過和αvβ3整合素結合去抑制傷口癒合及細胞移動。這些結果顯示除了實驗室之前發現的CTX A5之外,在台灣眼鏡蛇中還有許多不含RGD氨基酸序列的蛋白質可以特定地與整合素結合而更進一步去抑制傷者的傷口癒合過程。

    第二部分: LonA蛋白水解酵素晶體結構分析
    LonA 蛋白水解酵素是一種演化上保留下的的酵素存在於真核及原核生物,主要是利用水解ATP的活性去造成結構上改變進一步將其受質移動及降解。而LonA的受質主要是細胞內一些受到破壞而造成結構錯誤的蛋白質還有些特定的調控蛋白。LonA蛋白水解酵素擁有一個特色就是其受質可以刺激活化LonA蛋白水解酵素本身的水解ATP的活性。在此,我們發表了一個六聚體的LonA蛋白水解酵素的結構,此結構中存在著ADP的單體及不含ADP的單體,彼此間隔依序排列成六聚體。核酸的結合造成彼此不相鄰的單體上的poor loops、蛋白水解groove以及之前所不知的Arg-paddle的結構上的巨大移動。結構及生化實驗的結果顯示,受質結合的蛋白水解區域的groove可以異位性刺激LonA的水解ATP活性,以及Arg-paddle可以促進蛋白質受質降解。這些實驗數據提供了一個我們可以去了解LonA如何利用ATP水解造成結構上改變進而去異位性影響其受質的降解。


    Part. I: Binding model analysis of snake venom metalloproteinase/αvβ3 integrin complex

    We have previously identified two new P-III type ADAM-like snake venom metalloproteinases (SVMPs), i.e., atragin and kaouthiagin-like, from Taiwan cobra venom and determined their 3D structures with a distinct C- and I-shaped metalloproteinase/disintegrin-like/cysteine-rich (MDC) modular architecture. Herein, we investigated their functional targets to elucidate the role of cobra SVMPs in perturbing wound healing in snakebite victims. We showed that the non-RGD (Arg-Gly-Asp) C-shaped SVMP atragin binds about ten-fold stronger than the RGD-containing I-shaped SVMP kaouthiagin-like to αvβ3 integrin in the surface-immobilized form. Atragin binds to αvβ3 integrin through a novel interaction mode involving distal M and C domains via the RRN sequence motif in the hyper variable loop. In a cell adhesion assay, the adhesion of fibroblasts to atragin was mediated by αvβ3 integrin. Furthermore, atragin inhibited wound healing and suppressed cell migration in an αvβ3 integrin-dependent manner. These results, together with our previous demonstration of non-cytotoxic cobra CTX A5 in targeting αvβ3 integrin, suggest that cobra venom consists of several non-RGD toxins with integrin-binding specificity that could perturb wound healing in snakebite victims.

    Part. II: The crystal structure of the Lon AAA+ protease

    The Lon AAA+ protease (LonA) is an evolutionarily conserved protease that couples the ATPase cycle into motion to drive substrate translocation and degradation. A hallmark feature shared by AAA+ proteases is the stimulation of ATPase activity by substrates. Here we report the structure of LonA bound to three ADPs, revealing the first AAA+ protease assembly where the six protomers are arranged alternately in nucleotide-free and bound states. Nucleotide binding induces large coordinated movements of conserved pore loops from two pairs of three non-adjacent protomers and shuttling of the proteolytic groove between the ATPase site and a previously unknown Arg-paddle. Structural and biochemical evidence supports the roles of the substrate-bound proteolytic groove in allosteric stimulation of ATPase activity and the conserved Arg-paddle in driving substrate degradation. Together, this work provides a molecular framework for understanding how ATP-dependent chemomechanical movements drive allosteric processes for substrate degradation in a major protein-destruction machine.

    Part I. Binding model analysis of snake venom metalloproteinase/αvβ3 integrin complex.................................4 Introduction...............................................................................5 Snake venom metalloproteinases (SVMPs)...............................5 Integrins....................................................................................6 Figures......................................................................................9 Chapter 1.................................................................................19 Non-RGD SVMP atragin inhibits fibroblast cell migration through the binding to αvβ3 integrin.......................................19 Materials and methods............................................................19 Materials.................................................................................19 Expression and purification of recombinant soluble αvβ3 integrin...................................................................................19 Purification of atragin and kaouthiagin-like from crude venom....................................................................................20 ELISA-type binding assay for αvβ3 integrin binding..............20 Cell culture.............................................................................21 Cell adhesion assay................................................................21 Wound scratch assay.............................................................22 Transwell cell migration Assay...............................................22 Results...................................................................................23 Cobra atragin as a non-RGD integrin-binding SVMP.............23 Cation-dependent, atragin-mediated cell adhesion via αvβ3 integrin..................................................................................24 Atragin suppresses the cell migration of wound healing in an αvβ3 integrin-dependent manner..........................................26 Figures...................................................................................28 Chapter 2...............................................................................38 Hyper variable region in C domain of Atragin is responsible for binding to αvβ3 integrin.........................................................38 Materials and methods..........................................................38 Expression of recombinant C domain of atragin and kaouthiagin-like in E. coli.......................................................38 Expression of the recombinant DC domain of atragin in baculovirus expression system..............................................38 Surface Plasmon Resonance..................................................39 Synthesis of atragin-derived peptides...................................40 Results...................................................................................40 C domain of SVMP as integrin binding module......................40 KRRN motif of HVR in the C domain of Atragin for integrin binding...................................................................................42 Figures...................................................................................43 Chapter 3...............................................................................48 Binding modes of αvβ3 integrin/SVMPs................................48 Materials and methods..........................................................48 Molecular docking and energy minimization of atragin/integrin complex................................................................................48 Results..................................................................................48 Distal M domain of atragin is involved in binding to αvβ3 integrin.................................................................................48 Figures..................................................................................51 Discussion............................................................................53 Tables...................................................................................56 Part II. The crystal structure of the Lon AAA+ protease........57 Introduction..........................................................................58 LonA AAA+ protease...........................................................58 Figures.................................................................................60 Chapter 1..............................................................................65 Crystal structure of LonA/ADP/MMH-8709..........................65 Materials and methods.........................................................65 Cloning, protein expression, and purification.......................65 Synthesis of peptidyl boronate MMH8709...........................66 Protein crystallization...........................................................67 Structure determination and refinement..............................68 Secondary structure analysis by circular dichroism spectroscopy.......................................................................69 Results.................................................................................69 Overall structure of the LonA/ADP/MMH-8709 complex.....69 Figures................................................................................72 Table...................................................................................85 Chapter 2............................................................................86 Allosteric Operation of LonA AAA+ Protease......................86 Materials and methods.......................................................86 Site-directed mutagenesis.................................................86 Substrate degradation assay..............................................86 ATPase assay......................................................................87 Secondary structure analysis of α-casein and Ig2 by circular dichroism spectroscopy.....................................................87 Results...............................................................................88 Concerted action of pore loops from two pairs of three non-adjacent protomers............................................................88 Coupling among three functional sites...............................89 Figures...............................................................................93 Discussion.........................................................................100 Figures..............................................................................103 References........................................................................105

    1. Fox, J. W., and Serrano, S. M. (2008) Insights into and speculations about snake venom metalloproteinase (SVMP) synthesis, folding and disulfide bond formation and their contribution to venom complexity. FEBS J 275, 3016-3030
    2. Calvete, J. J., Juarez, P., and Sanz, L. (2007) Snake venomics. Strategy and applications. J Mass Spectrom 42, 1405-1414
    3. Fox, J. W., and Serrano, S. M. (2009) Timeline of key events in snake venom metalloproteinase research. J Proteomics 72, 200-209
    4. Sanz, L., Ayvazyan, N., and Calvete, J. J. (2008) Snake venomics of the Armenian mountain vipers Macrovipera lebetina obtusa and Vipera raddei. J Proteomics 71, 198-209
    5. Gutierrez, J. M., and Rucavado, A. (2000) Snake venom metalloproteinases: their role in the pathogenesis of local tissue damage. Biochimie 82, 841-850
    6. Ramos, O. H., and Selistre-de-Araujo, H. S. (2006) Snake venom metalloproteases--structure and function of catalytic and disintegrin domains. Comp Biochem Physiol C Toxicol Pharmacol 142, 328-346
    7. Chen, H. S., Tsai, H. Y., Wang, Y. M., and Tsai, I. H. (2008) P-III hemorrhagic metalloproteinases from Russell's viper venom: cloning, characterization, phylogenetic and functional site analyses. Biochimie 90, 1486-1498
    8. Li, S., Wang, J., Zhang, X., Ren, Y., Wang, N., Zhao, K., Chen, X., Zhao, C., Li, X., Shao, J., Yin, J., West, M. B., Xu, N., and Liu, S. (2004) Proteomic characterization of two snake venoms: Naja naja atra and Agkistrodon halys. Biochem J 384, 119-127
    9. Shoibonov, B. B., Osipov, A. V., Kryukova, E. V., Zinchenko, A. A., Lakhtin, V. M., Tsetlin, V. I., and Utkin, Y. N. (2005) Oxiagin from the Naja oxiana cobra venom is the first reprolysin inhibiting the classical pathway of complement. Mol Immunol 42, 1141-1153
    10. Hamako, J., Matsui, T., Nishida, S., Nomura, S., Fujimura, Y., Ito, M., Ozeki, Y., and Titani, K. (1998) Purification and characterization of kaouthiagin, a von Willebrand factor-binding and -cleaving metalloproteinase from Naha kaouthia cobra venom. Thromb Haemost 80, 499-505
    11. Huang, H. W., Liu, B. S., Chien, K. Y., Chiang, L. C., Huang, S. Y., Sung, W. C., and Wu, W. G. (2015) Cobra venom proteome and glycome determined from individual snakes of Naja atra reveal medically important dynamic range and systematic geographic variation. J Proteomics 128, 92-104
    12. O'Keefe, M. C., Caporale, L. H., and Vogel, C. W. (1988) A novel cleavage product of human complement component C3 with structural and functional properties of cobra venom factor. J Biol Chem 263, 12690-12697
    13. De Luca, M., Dunlop, L. C., Andrews, R. K., Flannery, J. V., Jr., Ettling, R., Cumming, D. A., Veldman, G. M., and Berndt, M. C. (1995) A novel cobra venom metalloproteinase, mocarhagin, cleaves a 10-amino acid peptide from the mature N terminus of P-selectin glycoprotein ligand receptor, PSGL-1, and abolishes P-selectin binding. J Biol Chem 270, 26734-26737
    14. Ito, M., Hamako, J., Sakurai, Y., Matsumoto, M., Fujimura, Y., Suzuki, M., Hashimoto, K., Titani, K., and Matsui, T. (2001) Complete amino acid sequence of kaouthiagin, a novel cobra venom metalloproteinase with two disintegrin-like sequences. Biochemistry 40, 4503-4511
    15. Wei, J. F., Mo, Y. Z., Qiao, L. Y., Wei, X. L., Chen, H. Q., Xie, H., Fu, Y. L., Wang, W. Y., Xiong, Y. L., and He, S. H. (2006) Potent histamine-releasing activity of atrahagin, a novel snake venom metalloproteinase. Int J Biochem Cell Biol 38, 510-520
    16. Sun, Q. Y., and Bao, J. (2010) Purification, cloning and characterization of a metalloproteinase from Naja atra venom. Toxicon
    17. Hung, D. Z., Liau, M. Y., and Lin-Shiau, S. Y. (2003) The clinical significance of venom detection in patients of cobra snakebite. Toxicon 41, 409-415
    18. Chattopadhyay, A., Patra, R. D., Shenoy, V., Kumar, V., and Nagendhar, Y. (2004) Surgical implications of snakebites. Indian J Pediatr 71, 397-399
    19. Wong, O. F., Lam, T. S., Fung, H. T., and Choy, C. H. (2010) Five-year experience with Chinese cobra (Naja atra)--related injuries in two acute hospitals in Hong Kong. Hong Kong Med J 16, 36-43
    20. Guan, H. H., Goh, K. S., Davamani, F., Wu, P. L., Huang, Y. W., Wu, W. G., and Chen, C. J. (2010) Structures of two elapid snake venom metalloproteases with distinct activities highlight the disulfide patterns in the D domain of ADAMalysin family proteins. J Struct Biol 169, 294-303
    21. Fox, J. W., and Serrano, S. M. (2005) Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases. Toxicon 45, 969-985
    22. Bjarnason, J. B., and Fox, J. W. (1995) Snake venom metalloendopeptidases: reprolysins. Methods Enzymol 248, 345-368
    23. Takeda, S., Takeya, H., and Iwanaga, S. (2011) Snake venom metalloproteinases: Structure, function and relevance to the mammalian ADAM/ADAMTS family proteins. Biochim Biophys Acta
    24. Igarashi, T., Araki, S., Mori, H., and Takeda, S. (2007) Crystal structures of catrocollastatin/VAP2B reveal a dynamic, modular architecture of ADAM/adamalysin/reprolysin family proteins. FEBS Lett 581, 2416-2422
    25. Liu, H., Shim, A. H., and He, X. (2009) Structural characterization of the ectodomain of a disintegrin and metalloproteinase-22 (ADAM22), a neural adhesion receptor instead of metalloproteinase: insights on ADAM function. J Biol Chem 284, 29077-29086
    26. Selistre-de-Araujo, H. S., Pontes, C. L., Montenegro, C. F., and Martin, A. C. (2010) Snake venom disintegrins and cell migration. Toxins (Basel) 2, 2606-2621
    27. Serrano, S. M., Kim, J., Wang, D., Dragulev, B., Shannon, J. D., Mann, H. H., Veit, G., Wagener, R., Koch, M., and Fox, J. W. (2006) The cysteine-rich domain of snake venom metalloproteinases is a ligand for von Willebrand factor A domains: role in substrate targeting. J Biol Chem 281, 39746-39756
    28. Pinto, A. F., Terra, R. M., Guimaraes, J. A., and Fox, J. W. (2007) Mapping von Willebrand factor A domain binding sites on a snake venom metalloproteinase cysteine-rich domain. Arch Biochem Biophys 457, 41-46
    29. Serrano, S. M., Wang, D., Shannon, J. D., Pinto, A. F., Polanowska-Grabowska, R. K., and Fox, J. W. (2007) Interaction of the cysteine-rich domain of snake venom metalloproteinases with the A1 domain of von Willebrand factor promotes site-specific proteolysis of von Willebrand factor and inhibition of von Willebrand factor-mediated platelet aggregation. Febs J 274, 3611-3621
    30. Shattil, S. J., Kim, C., and Ginsberg, M. H. (2010) The final steps of integrin activation: the end game. Nat Rev Mol Cell Biol 11, 288-300
    31. Hynes, R. O. (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110, 673-687
    32. Wegener, K. L., and Campbell, I. D. (2008) Transmembrane and cytoplasmic domains in integrin activation and protein-protein interactions (review). Mol Membr Biol 25, 376-387
    33. Campbell, I. D., and Humphries, M. J. (2011) Integrin structure, activation, and interactions. Cold Spring Harb Perspect Biol 3
    34. Xiong, J. P., Stehle, T., Diefenbach, B., Zhang, R., Dunker, R., Scott, D. L., Joachimiak, A., Goodman, S. L., and Arnaout, M. A. (2001) Crystal structure of the extracellular segment of integrin alpha Vbeta3. Science 294, 339-345
    35. Xiong, J. P., Stehle, T., Zhang, R., Joachimiak, A., Frech, M., Goodman, S. L., and Arnaout, M. A. (2002) Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand. Science 296, 151-155
    36. Van Agthoven, J. F., Xiong, J. P., Alonso, J. L., Rui, X., Adair, B. D., Goodman, S. L., and Arnaout, M. A. (2014) Structural basis for pure antagonism of integrin alphaVbeta3 by a high-affinity form of fibronectin. Nat Struct Mol Biol 21, 383-388
    37. Friedland, J. C., Lee, M. H., and Boettiger, D. (2009) Mechanically activated integrin switch controls alpha5beta1 function. Science 323, 642-644
    38. Springer, T. A., Zhu, J., and Xiao, T. (2008) Structural basis for distinctive recognition of fibrinogen gammaC peptide by the platelet integrin alphaIIbbeta3. J Cell Biol 182, 791-800
    39. Lin, F. Y., Zhu, J., Eng, E. T., Hudson, N. E., and Springer, T. A. (2016) beta-Subunit Binding Is Sufficient for Ligands to Open the Integrin alphaIIbbeta3 Headpiece. J Biol Chem 291, 4537-4546
    40. Wu, P. L., Lee, S. C., Chuang, C. C., Mori, S., Akakura, N., Wu, W. G., and Takada, Y. (2006) Non-cytotoxic cobra cardiotoxin A5 binds to alpha(v)beta3 integrin and inhibits bone resorption. Identification of cardiotoxins as non-RGD integrin-binding proteins of the Ly-6 family. J Biol Chem 281, 7937-7945
    41. Faye, C., Moreau, C., Chautard, E., Jetne, R., Fukai, N., Ruggiero, F., Humphries, M. J., Olsen, B. R., and Ricard-Blum, S. (2009) Molecular Interplay between Endostatin, Integrins, and Heparan Sulfate. J Biol Chem 284, 22029-22040
    42. Spitaleri, A., Mari, S., Curnis, F., Traversari, C., Longhi, R., Bordignon, C., Corti, A., Rizzardi, G. P., and Musco, G. (2008) Structural basis for the interaction of isoDGR with the RGD-binding site of alphavbeta3 integrin. J Biol Chem 283, 19757-19768
    43. Curnis, F., Longhi, R., Crippa, L., Cattaneo, A., Dondossola, E., Bachi, A., and Corti, A. (2006) Spontaneous formation of L-isoaspartate and gain of function in fibronectin. J Biol Chem 281, 36466-36476
    44. Takagi, J., Erickson, H. P., and Springer, T. A. (2001) C-terminal opening mimics 'inside-out' activation of integrin alpha5beta1. Nat Struct Biol 8, 412-416
    45. Greiling, D., and Clark, R. A. (1997) Fibronectin provides a conduit for fibroblast transmigration from collagenous stroma into fibrin clot provisional matrix. J Cell Sci 110 ( Pt 7), 861-870
    46. Takagi, J. (2007) Structural basis for ligand recognition by integrins. Curr Opin Cell Biol 19, 557-564
    47. Tettamanti, G., Grimaldi, A., Rinaldi, L., Arnaboldi, F., Congiu, T., Valvassori, R., and de Eguileor, M. (2004) The multifunctional role of fibroblasts during wound healing in Hirudo medicinalis (Annelida, Hirudinea). Biol Cell 96, 443-455
    48. Singer, A. J., and Clark, R. A. (1999) Cutaneous wound healing. N Engl J Med 341, 738-746
    49. Serrano, S. M., Jia, L. G., Wang, D., Shannon, J. D., and Fox, J. W. (2005) Function of the cysteine-rich domain of the haemorrhagic metalloproteinase atrolysin A: targeting adhesion proteins collagen I and von Willebrand factor. Biochem J 391, 69-76
    50. Takada, Y., Ye, X., and Simon, S. (2007) The integrins. Genome Biol 8, 215
    51. Koh, D. C., Armugam, A., and Jeyaseelan, K. (2006) Snake venom components and their applications in biomedicine. Cell Mol Life Sci 63, 3030-3041
    52. Rodgers, U. R., and Weiss, A. S. (2004) Integrin alpha v beta 3 binds a unique non-RGD site near the C-terminus of human tropoelastin. Biochimie 86, 173-178
    53. Bax, D. V., Rodgers, U. R., Bilek, M. M., and Weiss, A. S. (2009) Cell adhesion to tropoelastin is mediated via the C-terminal GRKRK motif and integrin alphaVbeta3. J Biol Chem 284, 28616-28623
    54. Saegusa, J., Akakura, N., Wu, C. Y., Hoogland, C., Ma, Z., Lam, K. S., Liu, F. T., Takada, Y. K., and Takada, Y. (2008) Pro-inflammatory secretory phospholipase A2 type IIA binds to integrins alphavbeta3 and alpha4beta1 and induces proliferation of monocytic cells in an integrin-dependent manner. J Biol Chem 283, 26107-26115
    55. Redick, S. D., Settles, D. L., Briscoe, G., and Erickson, H. P. (2000) Defining fibronectin's cell adhesion synergy site by site-directed mutagenesis. J Cell Biol 149, 521-527
    56. Yi, H., Gruszczynska-Biegala, J., Wood, D., Zhao, Z., and Zolkiewska, A. (2005) Cooperation of the metalloprotease, disintegrin, and cysteine-rich domains of ADAM12 during inhibition of myogenic differentiation. J Biol Chem 280, 23475-23483
    57. Margadant, C., and Sonnenberg, A. (2010) Integrin-TGF-beta crosstalk in fibrosis, cancer and wound healing. EMBO Rep 11, 97-105
    58. Moura-da-Silva, A. M., and Baldo, C. (2012) Jararhagin, a hemorrhagic snake venom metalloproteinase from Bothrops jararaca. Toxicon 60, 280-289
    59. Tanjoni, I., Evangelista, K., Della-Casa, M. S., Butera, D., Magalhaes, G. S., Baldo, C., Clissa, P. B., Fernandes, I., Eble, J., and Moura-da-Silva, A. M. (2010) Different regions of the class P-III snake venom metalloproteinase jararhagin are involved in binding to alpha2beta1 integrin and collagen. Toxicon 55, 1093-1099
    60. McLane, M. A., Marcinkiewicz, C., Vijay-Kumar, S., Wierzbicka-Patynowski, I., and Niewiarowski, S. (1998) Viper venom disintegrins and related molecules. Proc Soc Exp Biol Med 219, 109-119
    61. Huang, T. F., Holt, J. C., Lukasiewicz, H., and Niewiarowski, S. (1987) Trigramin. A low molecular weight peptide inhibiting fibrinogen interaction with platelet receptors expressed on glycoprotein IIb-IIIa complex. J Biol Chem 262, 16157-16163
    62. Kamiguti, A. S., Hay, C. R., and Zuzel, M. (1996) Inhibition of collagen-induced platelet aggregation as the result of cleavage of alpha 2 beta 1-integrin by the snake venom metalloproteinase jararhagin. Biochem J 320 ( Pt 2), 635-641
    63. Wagstaff, S. C., and Harrison, R. A. (2006) Venom gland EST analysis of the saw-scaled viper, Echis ocellatus, reveals novel alpha9beta1 integrin-binding motifs in venom metalloproteinases and a new group of putative toxins, renin-like aspartic proteases. Gene 377, 21-32
    64. Cominetti, M. R., Ribeiro, J. U., Fox, J. W., and Selistre-de-Araujo, H. S. (2003) BaG, a new dimeric metalloproteinase/disintegrin from the Bothrops alternatus snake venom that interacts with alpha5beta1 integrin. Arch Biochem Biophys 416, 171-179
    65. Tatsuta, T., and Langer, T. (2008) Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J 27, 306-314
    66. Gur, E. (2013) The Lon AAA+ Protease. Subcell Biochem 66, 35-51
    67. Bieniossek, C., Schalch, T., Bumann, M., Meister, M., Meier, R., and Baumann, U. (2006) The molecular architecture of the metalloprotease FtsH. Proc Natl Acad Sci U S A 103, 3066-3071
    68. Lee, S., Augustin, S., Tatsuta, T., Gerdes, F., Langer, T., and Tsai, F. T. (2011) Electron cryomicroscopy structure of a membrane-anchored mitochondrial AAA protease. J Biol Chem 286, 4404-4411
    69. Sauer, R. T., and Baker, T. A. (2011) AAA+ proteases: ATP-fueled machines of protein destruction. Annu Rev Biochem 80, 587-612
    70. Nyquist, K., and Martin, A. (2014) Marching to the beat of the ring: polypeptide translocation by AAA+ proteases. Trends Biochem Sci 39, 53-60
    71. Rotanova, T. V., Botos, I., Melnikov, E. E., Rasulova, F., Gustchina, A., Maurizi, M. R., and Wlodawer, A. (2006) Slicing a protease: structural features of the ATP-dependent Lon proteases gleaned from investigations of isolated domains. Protein Sci 15, 1815-1828
    72. Mikita, N., Cheng, I., Fishovitz, J., Huang, J., and Lee, I. (2013) Processive degradation of unstructured protein by Escherichia coli Lon occurs via the slow, sequential delivery of multiple scissile sites followed by rapid and synchronized peptide bond cleavage events. Biochemistry 52, 5629-5644
    73. Cheng, I., Mikita, N., Fishovitz, J., Frase, H., Wintrode, P., and Lee, I. (2012) Identification of a region in the N-terminus of Escherichia coli Lon that affects ATPase, substrate translocation and proteolytic activity. J Mol Biol 418, 208-225
    74. Waxman, L., and Goldberg, A. (1986) Selectivity of intracellular proteolysis: protein substrates activate the ATP-dependent protease (La). Science 232, 500-503
    75. Goldberg, A. L., Moerschell, R. P., Chung, C. H., and Maurizi, M. R. (1994) ATP-dependent protease La (lon) from Escherichia coli. Methods in Enzymology 244, 350-375
    76. Seol, J. H., Yoo, S. J., Shin, D. H., Shim, Y. K., Kang, M. S., Goldberg, A. L., and Chung, C. H. (1997) The heat-shock protein HslVU from Escherichia coli is a protein-activated ATPase as well as an ATP-dependent proteinase. Eur J Biochem 247, 1143-1150
    77. Yamada-Inagawa, T., Okuno, T., Karata, K., Yamanaka, K., and Ogura, T. (2003) Conserved pore residues in the AAA protease FtsH are important for proteolysis and its coupling to ATP hydrolysis. J Biol Chem 278, 50182-50187
    78. Zhang, X., and Wigley, D. B. (2008) The 'glutamate switch' provides a link between ATPase activity and ligand binding in AAA+ proteins. Nat Struct Mol Biol 15, 1223-1227
    79. Cha, S.-S., An, Y. J., Lee, C. R., Lee, H. S., Kim, Y.-G., Kim, S. J., Kwon, K. K., De Donatis, G. M., Lee, J.-H., Maurizi, M. R., and Kang, S. G. (2010) Crystal structure of Lon protease: molecular architecture of gated entry to a sequestered degradation chamber. The EMBO Journal 29, 3520-3530
    80. Duman, R. E., and Löwe, J. (2010) Crystal Structures of Bacillus subtilis Lon Protease. Journal of Molecular Biology 401, 653-670
    81. García-Nafría, J., Ondrovičová, G., Blagova, E., Levdikov, V. M., Bauer, J. A., Suzuki, C. K., Kutejová, E., Wilkinson, A. J., and Wilson, K. S. (2010) Structure of the catalytic domain of the human mitochondrial Lon protease: Proposed relation of oligomer formation and activity. Protein Science 19, 987-999
    82. Zhu, Y., Zhao, X., Zhu, X., Wu, G., Li, Y., Ma, Y., Yuan, Y., Yang, J., Hu, Y., Ai, L., and Gao, Q. (2009) Design, synthesis, biological evaluation, and structure-activity relationship (SAR) discussion of dipeptidyl boronate proteasome inhibitors, part I: comprehensive understanding of the SAR of alpha-amino acid boronates. Journal of medicinal chemistry 52, 4192-4199
    83. Otwinowski, Z., and Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods in Enzymology 276, 307-326
    84. McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C., and Read, R. J. (2007) Phaser crystallographic software. J Appl Crystallogr 40, 658-674
    85. Emsley, P., and Cowtan, K. (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126-2132
    86. Murshudov, G. N., Vagin, A. A., and Dodson, E. J. (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53, 240-255
    87. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., and Ferrin, T. E. (2004) UCSF Chimera--a visualization system for exploratory research and analysis. Journal of computational chemistry 25, 1605-1612
    88. Su, S. C., Lin, C. C., Tai, H. C., Chang, M. Y., Ho, M. R., Babu, C. S., Liao, J. H., Wu, S. H., Chang, Y. C., Lim, C., and Chang, C. I. (2016) Structural Basis for the Magnesium-Dependent Activation and Hexamerization of the Lon AAA+ Protease. Structure
    89. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., and Higgins, D. G. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947-2948
    90. Gouet, P., Robert, X., and Courcelle, E. (2003) ESPript/ENDscript: Extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res 31, 3320-3323
    91. Hsu, S. T., Fucini, P., Cabrita, L. D., Launay, H., Dobson, C. M., and Christodoulou, J. (2007) Structure and dynamics of a ribosome-bound nascent chain by NMR spectroscopy. Proc Natl Acad Sci U S A 104, 16516-16521
    92. Sauer, R. T., and Baker, T. A. (2011) AAA+ Proteases: ATP-Fueled Machines of Protein Destruction. Annual Review of Biochemistry 80, 587-612
    93. Iosefson, O., Nager, A. R., Baker, T. A., and Sauer, R. T. (2015) Coordinated gripping of substrate by subunits of a AAA+ proteolytic machine. Nat Chem Biol 11, 201-206
    94. Liao, J.-H., Kentaro, I., Kuo, C.-I., Huang, K.-F., Wakatsuki, S., Wu, S.-H., and Chang, C.-I. (2013) Structures of an ATP-independent Lon-like protease and its complexes with covalent inhibitors. Acta Crystallographica Section D 69, 1395-1402
    95. Botos, I., Melnikov, E. E., Cherry, S., Tropea, J. E., Khalatova, A. G., Rasulova, F., Dauter, Z., Maurizi, M. R., Rotanova, T. V., Wlodawer, A., and Gustchina, A. (2004) The catalytic domain of Escherichia coli Lon protease has a unique fold and a Ser-Lys dyad in the active site. J Biol Chem 279, 8140-8148
    96. Glynn, S. E., Martin, A., Nager, A. R., Baker, T. A., and Sauer, R. T. (2009) Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine. Cell 139, 744-756
    97. Suno, R., Niwa, H., Tsuchiya, D., Zhang, X., Yoshida, M., and Morikawa, K. (2006) Structure of the whole cytosolic region of ATP-dependent protease FtsH. Mol Cell 22, 575-585
    98. Bochtler, M., Hartmann, C., Song, H. K., Bourenkov, G. P., Bartunik, H. D., and Huber, R. (2000) The structures of HsIU and the ATP-dependent protease HsIU-HsIV. Nature 403, 800-805
    99. Kwon, A. R., Kessler, B. M., Overkleeft, H. S., and McKay, D. B. (2003) Structure and reactivity of an asymmetric complex between HslV and I-domain deleted HslU, a prokaryotic homolog of the eukaryotic proteasome. J Mol Biol 330, 185-195
    100. Sousa, M. C., Trame, C. B., Tsuruta, H., Wilbanks, S. M., Reddy, V. S., and McKay, D. B. (2000) Crystal and solution structures of an HslUV protease-chaperone complex. Cell 103, 633-643
    101. Wang, J., Song, J. J., Seong, I. S., Franklin, M. C., Kamtekar, S., Eom, S. H., and Chung, C. H. (2001) Nucleotide-dependent conformational changes in a protease-associated ATPase HsIU. Structure 9, 1107-1116
    102. Vineyard, D., Patterson-Ward, J., and Lee, I. (2006) Single-turnover kinetic experiments confirm the existence of high- and low-affinity ATPase sites in Escherichia coli Lon protease. Biochemistry 45, 4602-4610

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE