研究生: |
林怡禎 Lin, Yi Chen |
---|---|
論文名稱: |
掌性金金屬催化重氮化合物與亞硝基苯之環化反應和氧化鎢前驅物合成並應用於原子層沉積薄膜之成長 Chiral Gold-Catalyzed Cyclization of Nitrosobenzene and Diazos and Synthesis of Precursors for Tungsten Oxide Film Growth by Atomic Layer Deposition |
指導教授: |
劉瑞雄
Liu, Rai Shung |
口試委員: |
邱博文
陳銘洲 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
中文關鍵詞: | 重氮化合物 、鎢 、原子層沉積法 、金金屬催化 、環化反應 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
本論文分為兩個章節,第一章是利用掌性的金金屬催化硝基苯和重氮化合物的[3+2]環化反應。第二章為探究新穎前驅物之合成並應用於原子沉積技術生成氧化鎢薄膜。
第一章
我們合成不同的掌性金催化劑,對硝基苯和兩種不同的重氮化合物進行[3+2]環化反應,並且得到具有光學活性的異噁唑五元環產物,並試圖增加基質的立障來提產物的高對應體過量百分率( ee% )。
第二章
隨著原子層沉積技術的廣泛應用,我們目標以原子層沉積的方式生成氧化鎢薄膜。我們以六羰基鎢為基準,接上不同配位基增加其反應性與熱穩定性,改良成五種鎢錯合物,選擇最好的前驅物進行測試,並且成功的找到優化條件,順利生成氧化鎢薄膜。
Abstract
This thesis is devided into two sections. The first topic is chiral gold(I)-catalyzed [3+2] cycloaddition between ethyl diazoacetates, nitrosoarenes, and vinyldiazo carbonyls to yield chiral isoxazolidine products. The second one explores the synthesis of a novel of precursors and the growth tungsten oxide film by atomic layer deposition using that were just produced.
Chapter 1
Chiral gold(I)-catalyzed cycloaddition of ethyl diazoacetate, nitrosoarenes, and vinyldiazo carbonyl to yield isoxazolidine derivatives stereoselectively, are already described. We try to raise the enantiomeric excess (ee%) of the products by using bulky substrate.
Chapter 2
As for Chapter 2, with the wide application of atomic layer deposition technology, we aim to generate atomic layer deposition tungsten oxide films using tungsten hexacarbonyl as the basic substrate. We synthesized tungsten complexes to increase the reactivity and the thermal stability by the meditation of different ligands. We choose the best precursor to do atomic layer deposition and generate tungsten oxide films successfully.
第一章
[1] a) X. Wang, Q. M. Abrahams, P. Zavalij, M. P. Doyle, Angew. Chem. Int. Ed. 2012, 51, 5907–5910; b) Angew. Chem. 2012, 124, 6009–6012.
[2] C. Qin, H. M. L. Davies, J. Am. Chem. Soc. 2013, 135, 14516-14519.
[3] M. Yan, N. Jacobsen, W. Hu, L. S. Gronenberg, M. P. Doyle, J. T. Colyer, D. Bykowski, Angew. Chem. Int. Ed. 2004, 43, 6713–6716.
[4] J. Barluenga, G. Lonzi, L. Riesgo, L. A. Lypez, M. Tomas, J. Am. Chem. Soc. 2010, 132, 13200–13202.
[5] V. V. Pagar, A. M. Jadhav, R.-S. Liu, J. Am. Chem. Soc. 2011, 133, 20728–20731.
[6] C. Qin, H. M. L. Davies, J. Am. Chem. Soc. 2013, 135, 14516–14519.
[7] M. P. Doyle, M. Yan, W. Hu, L. S. Gronenberg, J. Am. Chem. Soc. 2003, 125, 4692
[8] Y. Liu, K. Bakshi, P. Zavalij, M. P. Doyle, Org. Lett. 2010, 12, 4304–4307.
[9] V. V. Pagar, R. S. Liu, Angew. Chem. Int. Ed. 2015, 54, 4923 –4926.
[10] a) A. M. Jadhav, V. V. Pagar, R.-S. Liu, Angew. Chem. Int. Ed. 2012, 51, 11809–11813; Angew. Chem. 2012, 124, 11979 – 11983; b) V. V. Pagar, A. M. Jadhav, R. S. Liu, J. Org. Chem. 2013, 78, 5711–5716; c) S. N. Karad, R.-S. Liu, Angew. Chem. Int. Ed. 2014, 53, 5444–5448; Angew. Chem. 2014, 126, 5548–5552.
[11] B. Lu, C. Li, L. Zhang, J. Am. Chem. Soc. 2010, 132, 14070 – 14072
[12] S. Bhar, S. K. Chaudhuri, Tetrahedron, 2003, 59, 3493–3498.
[13] S. P. Chavan, K. Shivasankar, R. Sivappa, R. Kale, Tetrahedron Letters , 2002, 43, 8583–8586
第二章
[1] National Applied Research Laboratories for Atomic Layer Deposition 2015, 128 Edition.
[2] S. E. Potts, H. B. Profijt, R. Roelofs, W. M. M. Kessels, Chem. Vap. Deposition., 2013, 19, 125-133.
[3] J. W. Klaus, S. J. Ferro, S. M. George, J. Electrochem. Soc., 2000, 147, 1175-1181.
[4] R. Liu, Y. Lin, L. Y. Chou, S. W. Sheehan, W. He, F. Zhang, H. J. M. Hou, D. Wang, Angew Chem. 2011, 123, 519-522.
[5] J. Malm, T. Sajavaara, M. Karppinen, Chem. Vap. Deposition. 2012, 18, 245-248
[6] D. Vernardou, H. Drosos, E. Spanakis, E. Koudoumas, C. Savvakis, N. Katsarakis, J. Mater. Chem., 2011, 21, 513-517
[7] R. Sivakumar, R. Gopalakrishnan, M. Jayachandran, C. Sanjeeviraja, Smart Mater. Struct., 2006, 15, 877–888