研究生: |
陳唯晴 Chen, Wei Ching |
---|---|
論文名稱: |
Secure Communications Using Independent Component Analysis 運用獨立成份分析法之秘密通訊 |
指導教授: |
阮約翰
Yuan, John |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 50 |
中文關鍵詞: | 秘密通訊 、獨立成份分析 、渾沌加密 |
外文關鍵詞: | secure communication, ICA, chao encryption |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
This dissertation presents the application of independent component analysis (ICA) and chaos synchronization on secure communications. We reviewed literatures related to chaos and ICA encryptions. The shortages of chaos and ICA encryptions are also pointed out. A modified ICA is proposed to recover signals with precise amplitude and phase. Three new schemes for secure communication are proposed. These schemes utilize ICA and chaos techniques to encrypt a message signal. Using a modified ICA technique, the schemes enable encryption of message signals with white noises. The keys, key space and key selection rules for each scheme are discussed in detail. Security analyses reveal that these schemes are immune to possible attacks including ciphertext only attack, known-plaintext, chosen plaintext/ciphertext attack, filtering attack, etc. Performance analyses are given by three measures including root mean square error, signal to noise ratio and computational times. Results show that the original message signal have been well masked by the key signals in the encrypted signals yet recovered faithfully and efficiently by the present schemes.
本論文提出獨立成份分析與渾沌同步在秘密通訊的應用,文中回顧有關渾沌加密和獨立成份分析加密法相關的文獻,並討論渾沌加密與獨立成份分析加密法的優缺點。進一步我們提出一個修正的獨立成份分析法來準確地回復訊號的振幅與相位。論文中提出三個使用獨立成份分析與/或渾沌同步於秘密通訊的方法。利用修正的獨立成份分析技術,可使用雜訊將原訊息訊號加以加密。論文中詳細討論每個方法的金鑰、金鑰空間及金鑰的選擇法。安全性分析顯示所提之方法免於只知密文攻擊、已知明文攻擊、選擇明文/密文攻擊及濾波攻擊等等。論文中以誤差均方根、訊雜比及計算時間來評估效能分析,結果顯示本論文所提之方法可將原訊息訊號隱藏在密文中並且有效率的解密訊息訊號。
1. A. Menezes and P.V. Oorshot, S. Vanstone, Handbook of Applied Cryptography, CRC Press, 1997.
2. T. Yang, “A survey of chaotic secure communication systems,” International Journal of Computational Cognition, Vol. 2, pp. 81-130, 2004.
3. B. Wang, Q. Wu, and Y. Hu, “A knapsack-based probabilistic encryption scheme,” Information Science, Vol. 177, pp. 3981-3994, 2007.
4. K. Kaya and A.A. Selcuk, “Threshold cryptography based on Asmuth–Bloom secret sharing,” Information Science, Vol. 177, 4148-4160, 2007.
5. T. Gao, F. Yan, and Z. Wang, “Quantum secure conditional direct communication via EPR pairs,” International Journal Modern Physics C, Vol. 16, 1293-1301, 2005.
6. T. Hwang, C.M. Li, and N.Y. Lee, “Secure communication using deterministic BB84 protocol,” International Journal Modern Physics C, Vol. 19, 625-635, 2008.
7. S. L. Lin and P.C. Tung, “Application of modified ICA to secure communications in chaotic systems,” Lecture Notes on Computer Science, Vol. 4707, pp. 431-444, 2007.
8. A. Alfalou and A. Mansour, “All-optical video-image encryption with enforced security level using independent component analysis,” Journal of Optics A: Pure Applied Optics, Vol. 9, pp. 787-796, 2007.
9. J. H. Poincaré, “Sur le problème des trois corps et les équations de la dynamique. Divergence des séries de M. Lindstedt,” Acta Mathematica, Vol. 13, pp. 1–270,1890.
10. E. N. Lorenz, “Deterministic nonperiodic flow,” Journal Atmospheric Sciences, Vol. 20, pp. 130-141, 1963.
11. T. Y. Li and J. A. Yorke, “Period three implies chaos,” American Mathematical Monthly, Vol. 82, pp. 985–992, 1975.
12. H. Fujisaka and T. Yamada, “Stability theory of synchronized motion in coupled-oscillator systems,” Progress in Theoretic Physics, Vol. 69, pp. 32-47, 1983.
13. L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Physical Review Letters, Vol. 64, pp. 821-824, 1990.
14. K. M. Cuomo, A.V. Oppenheim and S.H. Strogatz, “Synchronization of Lorenz-based chaotic circuits with application to communications,” IEEE Trans. on Circuit and Systems, Vol. 40, pp. 626-633, 1993.
15. T. Yang and L.O. Chua, “Secure communication via chaotic parameter modulation,” IEEE Trans. on Circuit Systems, Vol. 43, pp. 817-819, 1996.
16. C. W. Wu, L. O. Chua, “A simple way to synchronize chaotic systems with applications to secure communication systems,” International Journal of Bifurcation and Chaos, Vol. 3, pp.1619-1627, 1994.
17. T. Yang, C.W. Wu and L.O. Chua, “Cryptography based on chaotic systems,” IEEE Trans. on Circuit Systems, Vol. 44, pp. 469-472, 1997.
18. T. Yang, L.O. Chua, “Impulsive stabilization for control and synchronization of chaotic systems: Theory and Application to Secure Communication,” IEEE Trans. on Circuit Systems, Vol. 44, pp. 976-988, 1997.
19. M. G. Rosenblum, A. S. Pikovsky and J. Kurths, “Phase synchronization of chaotic oscillators,” Physical Review Letters, Vol. 76, pp. 1804-1807, 1996.
20. R. Mainieri and J. Rehacek, “Projective synchronization in three-dimensional chaotic systems,” Physical Review Letters, Vol. 82, pp. 3042-3045, 1999.
21. B. H. Wang and S. Bu, “Controlling the ultimate state of projective synchronization in chaos: application to chaotic encryption,” International Journal of Modern Physics B, Vol. 18, pp. 2415-2421, 2004.
22. S. H. Chen and J. Lü, “Synchronization of an uncertain unified chaotic system via adaptive control,” Chaos Solitons & Fractals, Vol. 14, pp. 643-647, 2002.
23. X. Tan, J. Zhang and Y. Yang, “Synchronizing chaotic systems using backstepping design,” Chaos Solitons & Fractals, Vol. 16, pp. 37-45, 2003.
24. X. Y. Wu, Z. H. Guan and Z. P. Wu, “Adaptive synchronization between two different hyperchaotic systems,” Nonlinear Analysis, Vol. 68, pp. 1346-1351, 2008.
25. H. K. Chen, “Global chaos synchronization of new chaotic systems via nonlinear control,” Chaos Solitons & Fractals, Vol. 23, pp. 1245-1251, 2005.
26. A. Ucar, K. E. Lonngre, E. W. Bai, “Chaos synchronization in RCL-shunted josephson junction via active control,” Chaos Solitons Fractals, Vol. 31, pp. 105-111, 2007.
27. K. M. Short, “Steps toward unmasking secure communications,” International Journal of Bifurcation and Chaos, Vol. 4, pp. 959-977, 1994.
28. C. S. Zhou and T. L. Chen, “Extracting information masked by chaos and contaminated with noise: some considerations on the security of communication approaches using chaos,” Physics Letters Letter A, Vol. 234, pp. 429, 1997.
29. G. Álvarez, F. Montoya, M. Romera and G. Pastor, “Cryptanalysis of a chaotic secure communication system", Physics Letters A, Vol. 306, pp. 200-205, 2003.
30. G. Álvarez, F. Montoya, M. Romera and G. Pastor, “Cryptanalysis of a discrete chaotic cryptosystem using external key,” Physics Letters A, Vol. 319, pp. 334-339, 2003.
31. S. Li, X. Mou, Y. Cai, Z. Ji and J. Zhang, “On the security of a chaotic encryption scheme: problems with computerized chaos in finite computing precision,” Computational Physical Communications, Vol. 153, pp. 52-58, 2003.
32. S. Li, X. Mou, B.L. Yang, Z. Ji and J. Zhang, “Problems with a probabilistic encryption scheme based on chaotic Systems,” International Journal Bifurcation and Chaos, Vol. 13, pp. 3063-3077, 2003.
33. G. Álvarez, F. Montoya, M. Romera and G. Pastor, “Breaking parameter modulated chaotic secure communication system,” Chaos Solitons & Fractals, Vol. 21, pp. 783-787, 2004.
34. A. Hyvarinen, J. Karhunen and E. Oja, Independent Component Analysis, John Wiley & Sons, New York, 2001.
35. T. Ristaniemi and J. Joutsensalo, “Advanced ICA-based receivers for block fading DS-CDMA channels,” Signal Processing, Vol. 82, pp. 417-431, 2002.
36. K. Umeno and K. Kitayama, "Spreading sequences using periodic orbits of chaos for CDMA," IEE Electronic Letters, Vol. 35, pp. 545-546, 1999.
37. K. Umeno, “Independent component analysis of mixed chaotic signals for communications systems,” Nonlinear Phenomena in Complex Systems, Vol. 10, pp. 170–175, 2007.
38. Q. H. Lin and F. L. Yin, “Blind source separation applied to image cryptosystems with dual encryption,” Electron. Lett., Vol. 38, pp. 1092-1094, 2002.
39. Q. H. Lin, F. L. Yin and H. Liang, “Blind source separation-based encryption of images and speeches,” Lecture Notes on Computer Science, Vol. 3497, pp. 544-549, 2005.
40. Q. H. Lin, F. L. Yin and T. M. Mei, “A blind source separation based method for speech encryption,” IEEE Trans. Circuits Systems-I Regular Papers, Vol. 53, pp. 1320-1328, 2006.
41. S. Li, C. Q. Li and K. T. Lo, “Cryptanalyzing an encryption scheme based on blind source separation,” IEEE Trans. Circuits Systems-I Regular Papers, Vol. 55, pp. 1055-1063, 2008.
42. C. Jutten and J. Herault, “Blind separation of sources, Part 1: an adaptive algorithm based on neuromimetic architecture,” Signal Processing, Vol. 24, pp. 1-10, 1991.
43. Z. P. Jiang, “A note on chaotic secure communication systems,” IEEE Trans. Circuits Syst.-I Fund. Theory Appl., Vol. 49, pp. 92-96, 2002.
44. J.P. Yeh and K.L. Wu, “A simple method to synchronize chaotic systems and its application to secure communications,” Mathematical Computer Modeling, Vol. 47, pp. 894-902, 2008.
45. H.K. Chen and C.I. Lee, “Anti-control of chaos in rigid body motion,” Chaos Solitons & Fractals, Vol. 21, pp. 957-965, 2004.
46. G. Álvarez, S.Li, F. Montoya, G. Pastor and M. Romera, “Breaking projective synchronization secure communication using filtering and generalized synchronization,” Chaos Solitons & Fractals, Vol. 24, pp. 775-783, 2005.
47. K. M. Short, “Unmasking a modulated chaotic communication scheme,” International Journal of Bifurcation and Chaos, Vol. 6, pp. 267-275, 1996.
48. G. Perez and H.A. Cerdeira, “Extracting messages masked by chaos,” Physical Review Letters, Vol. 74, pp. 1970-1973, 1995.
49. G. Álvarez, F. Montoya, M. Romera and G. Pastor, “Breaking two secure communication systems based on chaotic masking,” IEEE Trans. Circuit Systems, Vol. 51, pp. 505-506, 2004.
50. J.F. Cardoso and A. Souloumiac, “Blind beamforming for non-Gaussian signals,” IEE Proceedings F, Vol. 140, pp. 771-774, 1993.
51. T. W. Lee, A. J. Bell and R. H. Lambert, “Blind separation of delayed and convolved sources,” Advances in Neural Information Processing Systems, Vol. 9, pp. 758-764, 1996.
52. L.P. Tam, H.K Chen, J.H. Chen and W.M. SiTou, “Generation of hyperchaos from the Chen-Lee system via sinusoidal perturbation,” Chaos Solitons & Fractals, Vol. 38, pp. 826-839,2008.
53. D. R. Stinson, Cryptography: Theory and Practice, Boca Raton, FL: CRC Press, 1995.
54. G. Alvarez and S. Li, “Some basic cryptographic requirements for chaos-based cryptosystems,” International Journal of Bifurcation and Chaos, Vol. 16, pp. 2129-2151, 2006.