簡易檢索 / 詳目顯示

研究生: 柯盈盈
Ying-Ying Ko
論文名稱: Human Factors Assessment on Display Type and Viewing Angle of Stereoscopic Displays
立體顯示器顯示型態與觀看角度之人因評估
指導教授: 黃雪玲
Sheue-Lin Hwang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 51
中文關鍵詞: 立體顯示器人因評估舒適度觀看角度交錯殘影
外文關鍵詞: stereoscopic display, human factors assessment, comfort, viewing angle, crosstalk
相關次數: 點閱:53下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Since 1830, 3D stereoscopic installations have arisen. However, these kinds of installation were un-naked-eye and needed wearing additional glasses to get the stereoscopic effect. At present, the inconveniences of un-naked-eye displays have been solved by the research which continued along with the technology breakthrough. The naked-eye types have been developed. However, using the present 3D stereoscopic display types for a long time, the users may feel insufficient visual angle, eye strain, dizziness, etc. Therefore, this research investigated the effects of different stereoscopic display types (barrier, lenticular and 2D-plus-depth) based on different viewing angles (0˚, 15˚, 30˚) for multi-users. Subjective evaluations (comfort, stereo, crosstalk) and objective measures (accommodation time, CFF, visual acuity) of human factors assessment were applied.
    We employed systematic experiments and statistical analyses in this study. The experimental results indicated that 2D-plus-depth type was the best one, no matter in subjective evaluations or objective measures. The 2D-plus-depth type resulted in the highest comfort and stereo effect, and the lowest in visual fatigue and crosstalk. For viewing angle factor, stereo at 0˚ viewing angle was not different from that at 15˚ viewing angle but was apparently higher than that at 30˚ viewing angle. The main outcome of this research was to propose the most appropriate type of stereoscopic displays for design and users. Moreover, applying the factor of viewing angle could find out the conditions and limitations of stereoscopic display for multi-users by human factors assessment.


    Table of Content 摘要 i Abstract ii 誌謝 iii Table of Content iv List of Figures vi List of Tables vii Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation 1 1.3 Objectives 2 Chapter 2 Literature Review 4 2.1 Perception principles of 3D stereoscopic vision 4 2.1.1 Oculomotor cues 5 2.1.2 Visual cues 6 2.1.2.1 Monocular cues 6 2.1.2.2 Binocular cues 7 2.2 Deficiency of binocular disparity for 3D stereoscopic display 8 2.2.1 Resolution and view zone numbers 8 2.2.2 Visual fatigue and discomfort 9 2.3 2D-plus-depth for 3D stereoscopic displays 12 2.4 Human factors assessment 13 2.4.1 Subjective evaluation 13 2.4.2 Objective evaluation 14 Chapter 3 Methodology 16 3.1 Experimental Design 16 3.2 Experimental apparatus and environment 19 3.3 Task and procedure 20 3.4 Data collection and analysis 23 Chapter 4 Results and Discussion 25 4.1 Normal probability test 25 4.2 Objective measures 26 4.2.1 Change of accommodation time 26 4.2.2 Critical Fusion Frequency 27 4.3 Visual acuity 28 4.4 Subjective evaluations 30 4.4.1 Subjective comfort evaluation 30 4.4.2 Subjective stereo evaluation 32 4.5 Crosstalk level 35 4.6 Discussion 39 4.6.1 Comfort and fatigue evaluations 39 4.6.2 Stereo evaluation 40 4.6.3 Crosstalk level and other additional comparisons 40 4.6.4 Summary of results 43 4.6.5 The limitations in this experiment 44 Chapter 5 Conclusions 45 References 46 Appendix 49

    References
    Borner, R. (1999). Four autostereoscopic monitors on the level of industrial prototypes. Displays 20(2): 57-64.
    Chang, K. H. (2007). A study on the economic polarized light stereoscopic projection system. Executive Master of Optics and Photonics, National Central University.
    Collewijn, H., Steinman, R. M., Erkelens, C. F., Regan, David. (1991). Binocular Fusion, Stereopsis and Stereoacuity with Moving Head. Vision and Visual Dysfunction- Binocular Vision. Regan, D., eds.
    Cooper, R., (2005). Magic Eye How to See 3D, Retrived March 16, 2008, from http://www.vision3d.com/frame.html .
    Emoto, M., Nojiri, Y., Okano, Fumio. (2004). Changes in fusional vergence limit and its hysteresis after viewing stereoscopic TV. Displays 25(2-3):67-76.
    Halle, M. (1997). Autostereoscopic displays and computer graphics. Computer Graphics, ACM SIGGRAPH 31(2): 58-62
    Heuer, H., Hollendiek, G., Kroger, H., Romer, T., 1989. Die Ruhelage der Augen und ihr EinfluB auf Beobachtungsabatand und visuelle Ermudung bei Bildschirmarbeit. Zeitschrift fur Experimentelle und Angewandte Psychologie 36:538-566
    Holliman, N. (2005). 3D display systems. Department of Computer Science, University of Durham, England.
    Hsu, W. L. (2007), 3D display technology state and analysis introduction. Report presented at the proceedings of New Generation of 3D Display Technology Development Approach. Taiwan, R.O.C.
    Huang, W. C., Tsai, C. H. (2002). 3D displays market and technology research, ITRI, Taiwan, R.O.C.
    IJsselsteijn, W., Ridder, H., Hamberg, R., Bouwhuis, D., Freeman, J.(1998). Perceived depth and the feeling of presence in 3DTV. Displays 18(4): 207-214
    Kawai, T. (2002). 3D displays and applications. Displays 23(1-2): 49-56.
    Klein, A. (1998). Stereoscopy.com - The World of 3D-Imaging. Retrived March 16, 2008, from http://www.stereoscopy.com/ .
    Kooi, F. L., Toet, A. (2004). Visual comfort of binocular and 3D displays. Displays 25(2-3): 99-108.
    Lambooij, M. T. M., IJsselsteijn, W. A., Heynderickx, I. (2007). Visual Discomfort in Stereoscopic Display: A Review. Paper presented at the Proceedings of SPIE,6490, 64900I,1-13.
    McAllister, D. F. (2002). Display Technology: Stereo & 3D Display Technologies. Wiley Encyclopedia on Imaging: 1327-1344.
    Patterson, R. (1997). Visual processing of depth information in stereoscopic displays. Displays 17(2): 69-74.
    Peli, E., Hedges, R., Tang, J., Landmann, D. (2001). A binocular stereoscopic display system with coupled convergence and accommodation demands. SID.
    Philips (2007).WOWvx-The 3D experience- See the world as it really is, Retrieved October 3, 2007, from web site at http://www.wowvx.com/Index.html.
    Pommeray, M., Kastelik, J. C., Gazalet, M. G. (2003). Image crosstalk reduction in stereoscopic laser-based display systems. Journal of Electronic Imaging 12(4): 689-696.
    Seuntiëns, P. J. H., Meesters, L. M. J., IJsselsteijn, W.A.. (2005). Perceptual attributes of crosstalk in 3D images. Displays 26(4-5): 177-183.
    Shibata, T., Kawai, T. Ohta, K., Otsuki, M., Miyake, N., Yoshihara, Y., Iwasaki, T. (2005). Stereoscopic 3-D display with optical correction for the reduction of the discrepancy between accommodation and convergence. Journal of the SID 13(8): 665-671.
    Suyama, S., Ishiguren, Y., Takada, H., Nakazawa, K., Hosohata, J., Takao, Y., Fujikado. T. (2005). Evaluation of visual fatigue in viewing a depth-fused 3-D display in comparison with a 2-D display. NTT Technical Review, 82-88.
    Wickens, C. D., Hollands, J. G. (2002). Spatial Displays. Engineering Psychology and Human Performance, Pearson Education Taiwan Ltd.
    Woodgate, G. J., Harrold, J. (2006). Key design issues for autostereoscopic 2-D/3-D displays. Journal of the SID 14(5): 421-426.
    Yano, S., Emoto, M., Mitsuhashi, T. (2004). Two factors in visual fatigue caused by stereoscopic HDTV images. Displays 25(4):141-150.
    Yano, S., Ide, S., Mitsuhashi, T., Thwaites, H. (2002). A study of visual fatigue and visual comfort for 3D HDTV/HDTV images. Displays 23(4): 191-201.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE