研究生: |
黃博郁 Huang, Bo-Yu |
---|---|
論文名稱: |
利用外差式光學偏光儀研究十二烷基硫酸鈉 對小牛血清蛋白熱變性之影響 Using heterodyne optical polarimeter to study the effect on thermal denaturation of bovine serum albumin with sodium dodecyl sulfate |
指導教授: |
吳見明
Wu, Chen-Ming |
口試委員: |
莊淳宇
Chuang, Chun-Yu 李朱育 Lee, Ju-Yi |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2012 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 97 |
中文關鍵詞: | 外差式光學偏光儀 、小牛血清蛋白 、十二烷基硫酸鈉 |
外文關鍵詞: | heterodyne optical polarimeter, bovine serum albumin, sodium dodecyl sulfate |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,有許多的量測方法皆可用來研究蛋白質在加熱後其結構之變化,例如差分掃描法、圓偏振二色光譜法、X-ray 晶格繞射法等等,但皆無法即時的量測出蛋白質水溶液在加熱後結構的快速變化。因此本研究使用具有放大旋光訊號效果約20 倍的自製光學外差式偏光儀,以及精密的熱電致冷晶片溫度控制器,設計了三部份的實驗來詳細探討BSA 水溶液在加熱後的熱變性現象。
實驗結果指出,BSA水溶液在加熱至約67.8正負0.3°C 時會產生明顯之熱變性現象,且此時蛋白質之結構是屬於可逆的,在降溫後其結構會因為蛋白質之復性作用而慢慢恢復。而隨著加熱溫度的提高,其結構會由可逆逐漸轉變為部分可逆,最後在大約超過75 °C 時結構會變為幾乎不可逆。而蛋白質水溶液之濃度、加熱系統之加熱速度雖然皆會些許的影響其變性溫度,但皆不是影響蛋白質實際變性溫度的主要因素。而在將BSA 水溶液和陰離子界面活性劑-十二烷基硫酸鈉以不同濃度比例相互混合後,在加熱時可由本研究之系統明顯觀測到其對蛋白質的結構具有一定程度之穩定作用,使其加熱到達原本的變性溫度67.8正負0.3°C 時並不會發生變性的現象,且其濃度莫耳比[SDS]/[BSA]約在10 左右時會出現最大之保護效果,大約將變性溫度延後了15°C,此結果可活用在許多蛋白質的加工上,也和部分文獻中使用不同方法所得之研究結果不謀而合。
In the past few years, many measurement methods have been used to study the structural change of protein after heating, such as differential scanning method,circularly polarized dichroism spectroscopy, X-ray diffraction crystallography method,etc. However, these methods are not easy to monitor the denaturation process of BSA aqueous solution in real time. In this study, a homemade optical heterodyne polarimeter that was capable of amplifying the optical rotation signal for 20-fold was built up by authors, and with the use of precision thermoelectric cooler (TEC), a
three-part experiments was designed to study the phenomenon of thermal denaturation of BSA aqueous solution after heating.
Our results indicated that when BSA aqueous solution is heated to about 67.8°C, the thermal denaturation was observed and the structure of BSA was reversible at this time by cooling down because of protein’s renaturation role. When the temperature was between 70-75°C, its structure was gradually changed from a reversible way to a partially reversible status, and finally the structure became almost
irreversible at about more than 75°C. However, although both the concentration of the aqueous protein solution and the rate of heating with TEC system have some effects on the temperature of denaturation, they are not the main factors.
When BSA solution was mixed with anionic surfactants – the sodium dodecyl sulfate (SDS), to create different concentration of solution, a certain extent of stable effect on the protein structure was significantly observed when heated by our TEC system. The mixed solution avoided the structure of protein unfolding at denaturation temperature of 67.76 0.34°C, and when its concentration molar ratio [SDS] / [BSA] was about 10, the protective effect reached its maximum, making the denaturation temperature delay about 15°C. These results can not only be applied to the processing of many proteins, but also were consistent with other studies using different methods.
1. J. R. Macdonald, and H. P. Bachinger, “HSP47 binds cooperatively to triple
helical type I collagen but has little effect on the thermal stability or rate of
refolding,” J Biol Chem, vol. 276, no. 27, pp. 25399-403, 2001.
2. J. N. de Wit, “Structure and functional behaviour of whey proteins,” Netherlands
Milk and Dairy Journal, vol. 35 no. 1, pp. 47-64, 1981.
3. P. Walstra, and R. Jenness, “Dairy Chemistry and Physics”, 1984.
4. M. Murata, F. Tani, T. Higasa et al., “Heat-induced transparent gel formation of
bovine serum albumin,” Bioscience, biotechnology, and biochemistry, vol. 57, no.
1, pp. 43-46, 1993.
5. P. Relkin, “Thermal unfolding of beta-lactoglobulin, alphalactalbumin,and
bovine serum albumin. A thermodynamic approach,” Crit Rev Food Sci Nutr, vol.
36, no. 6, pp. 565-601,1996.
6. T. Peter, “Serum albumin,” Adv Protein Chem, vol. 37, no. 2, pp. 161-245, 1985.
7. K. Takeda, M. Shigeta et al., “Secondary structures of bovine serum albumin in
anionic and cationic surfactant solutions,” J. Colloid Interface Sci, vol. 117, pp.
120, 1987.
8. D. M. Mulvihill, and M. Donovan, “Whey proteins and their thermal
denaturation: A review,” Irish Journal of Food Science and Technology, vol. 11,
91
no. 1, pp. 43-75, 1987.
9. http://www.ncbi.nlm.nih.gov.
10. T. Kongraksawech, “Characterization by optical methods of the heat
denaturation of bovine serum albumin (BSA) as affected by protein
concentration, pH, ionic strength and sugar concentration,” Food Science and
Technology, Oregon State University, 2007.
11. J. I. Boye, I. Alli et al., “Interactions Involved in the Gelation of Bovine Serum
Albumin,” Journal of Agricultural and Food Chemistry, vol. 44, no. 4, pp.
996-1004, 1996.
12. J. Oakes, “Thermally denatured proteins: Nuclear magnetic resonance, binding
isotherm, and chemical modification studies of thermally denatured bovine
serum albumin.,” Journal of the Chemical Society, Faraday Transactions 1:
Physical Chemistry in Condensed Phases, vol. 72, no. 1, pp. 228-237, 1976.
13. R. Wetzel, J. Behlke et al., “Temperature behaviour of human serum albumin,”
Eur J Biochem, vol. 104, no. 2, pp. 469-78, 1980.
14. C. N. Pace, “The stability of globular proteins,” CRC Crit Rev Biochem, vol. 3,
no. 1, pp. 1-43, 1975.
15. http://zh.wikipedia.org/wiki/十二烷基硫酸钠
16. R. M. Garavito, S. Ferguson-Miller, “Membrane protein structural biology
92
minireview series,” J. Biol. Chem, vol. 276, pp. 32-403, 2001.
17. T.V. Waehneldt, Biosystems, vol. 6, pp. 176, 1975.
18. J. Steinhardt, J.A. Reynolds, “in: Multiple Equilibria in Proteins,Academic
Press, ” pp. 239, 1969.
19. M.N. Jones, “in: Biological Interfaces, ” Elsevier, Amsterdam, pp. 101, 1975.
20. S. Lapanje, “in: Physicochemical Aspects of Protein Denaturation,
Wiley–Interscience, ” New York, pp. 156, 1978.
21. K. Takeda, Y. Moriyama et al., “in: A.T. Hubbard (Ed.), ” Encyclopedia of
Surfactant and Colloid Science, Part 1, Dekker, New York, pp. 2558, 2002.
22. K. Takeda, K. Hachiya, Y. Moriyama, “in: A.T. Hubbard (Ed.), ” Encyclopedia
of Surfactant and Colloid Science, Part 2, Dekker, New York, pp. 2575, 2002.
23. E.L. Duggan, F.M. Luck, J. Biol. Chem, vol. 172, pp. 205, 1948.
24. G. Markus, F. Karush, J. Am. Chem. Soc, vol. 79, pp. 3264, 1957.
25. G. Markus, R.L. Love, F.C. Wissler, J. Biol. Chem, vol. 239, pp. 3687, 1964.
26. Y. Moriyama, K. Takeda, Langmuir, vol. 15, pp. 2003, 1999.
27. Y. Moriyama, Y. Sato, K. Takeda, J. Colloid Interface Sci. vol. 117, pp.420,
1993.
28. Y. Moriyama, Y. Kawasaka et al., J. Colloid Interface Sci, vol. 257, pp. 41–46,
2003.
93
29. J. P. Attfield, A. W. Sleight et al., “Structure determination of α-CrPO4 from
powder synchrotron X-ray data”, Nature, vol. 322, no. 1, pp. 620-622 , 1986.
30. T. Tsukihara, H. Aoyama, E. Yamashita, T. Tomizaki, H. Yamaguchi, K. I.
Shinzawa, R. Nakashima, R. Yaono, and S. Yoshikawa, “Structures of metal
sites of oxidized bovine heart cytochrome,” Science, vol. 269, no. 2, pp.
1069-1074, 1995.
31. Y. A. Antonov and B. A. Wolf, “Calorimetric and Structural Investigation of the
Interaction between Bovine Serum Albumin and High Molecular Weight
Dextran in Water”, Biomacromolecules, vol. 6, no. 5, pp. 2980-2989, 2005.
32. K. Yamada, J. Sato, H. Oku, and R. Katakai, “Conformation of transmembrane
partial peptides of peripheral myelin protein,” J. Peptide Res, vol. 62, no. 2, pp.
78-87, 2003.
33. Mackenzie, R.C., “Nomenclature in thermal analysis,” Thermochimica Acta, vol.
28, no. 1, pp. 1-6, 1979.
34. Oldfield, D. J.; Singh, H.; Taylor, M. W., “Kinetics of heatinduced whey protein
denaturation and aggregation in skim milks with adjusted whey protein
concentration,” J. Dairy Research, vol. 72, no. 3, pp. 369-378, 2005.
35. W. B. Gratzer and D. A. Cowburn, “Optical Activity of Biopolymers,” Nature,
vol. 222, no. 2, pp. 426-431, 1969.
94
36. Y. A. Antonov and B. A. Wolf, “Calorimetric and Structural Investigation of the
Interaction between Bovine Serum Albumin and High Molecular Weight
Dextran in Water”, Biomacromolecules, vol. 6, no. 5, pp. 2980-2989, 2005.
37. K. Yamada, J. Sato, H. Oku, and R. Katakai, “Conformation of transmembrane
partial peptides of peripheral myelin protein,” J. Peptide Res, vol. 62, no. 2, pp.
78-87, 2003.
38. D. J. Caldwell and H. Eyring, “The Theory of Optical Activity,” ch. 1, New
York: Wiley-Interscience, 1971.
39. E. Hecht, “Optics,” 4ed ed., ch. 8, New York: Addison Wesley, 2002.
40. T. W. King and G. L. Cote, “Closed loop polarimetric glucose sensing using the
Pockels effect,” Ann. Inter. Conf. Of IEEE EMBS, vol. 1, no. 3, pp. 161-162,
1992.
41. M. P. Silverman, N. Ritchie, G. M. Cushman, and B. Fisher, “Experimental
configurations using optical phase modulation to measure chiral asymmetries in
light specularly reflected from a naturally gyrotropic medium,” J. Opt. Soc, vol.
5, no. 7, pp. 1852-1862, 1988.
42. A. J. Majewski, M. Sanzari, H. L. Cui et al., “Effects of ultraviolet radiation on
the type-I collagen protein triple helical structure: a method for measuring
structural changes through optical activity,” Phys Rev E Stat Nonlin Soft Matter
95
Phys, vol. 65, no. 3, pp. 319-328, 2002.
43. Georgiou, G. and E. D. Bernardez-Clerk, “Protein Refolding”, American
Chemical Society, pp.1-49, 1991.
44. R. H. Carrett and C. M. Grisham, Biochemistry. Saunders College Publishing,
1999.
45. McKee, T., “Peptide and protein”, Biochemistry, Wm. C. Brown Publishers, pp.
78-116, 1996.
46. F. B. Armstrong, Biochemistry. Oxford, 1983.
47. H. Neurath and J. P. Greenstein et al., “Thechemistry of protein denaturation”,
Chemical Reviews, vol. 32, pp. 157-265, 1943.
48. 周茂村,“不同化學變性劑、溫度和還原劑對溶菌酶結構改變之研究",國
立中央大學化學工程與材料工程所碩士論文 (2002).
49. M. Mamoru and N. Daisukeet al., “Difference between guanidinium chloride and
urea as denaturants of globular protein: The possibility of application to
improved refolding process”, Chemical and Pharmaceutical Bulletin, vol. 40, pp.
550-552, 1992.
50. http://juang.bst.ntu.edu.tw/Protein/Analysis/A3.htm
51. D. Myers, “Surfaces, Interfaces, and Colloids: Principles and Applications,” John
Wiley & Sons: Canada, Chapter 3, Chapter 8, 1999.
96
52. Y. C. Chiu, Y. C. Han, “Relationship of Solubilization Rate to Micellar Properties
Anionic and Nonionic Surfactants,” Structure/Performance Relationships in
Surfactants, vol. 253, no. 6, pp. 89-105, 1984.
53. 李雅琪,“聚氧乙烯系非離子型界劑之吸附暨聚集行為研究",國立臺灣大
學化學工程學博士論文 (2002).
54. C. N. Mulligan, R. N. Yong, “Surfactant-enhanced remediation of contaminated
soil: a review, ” Engineering Geology, vol. 60, pp. 371-380, 2001.
55. 李居昌,“背景汙染物對固微胞法處理廢水之影響",國立中山大海洋環境
及工程研究所碩士論文 (1997).
56. D.A. Sabatiniand and J. H. Harwell “Solubilization andmicroemulsification of
chlorinated solvents using direct food additive (edible) surfactants,” Ground
Water. vol. 32, no. 4, pp. 561-569, 1994.
57. 宋俊仁,“聚電解質與界面活性劑混合水溶液之動態表面張力量測",國立
台灣科技大學化學工程學碩士論文 (2008).
58. 陳欣樂,“小牛血清蛋白熱變性之旋光研究",國立清華大學生醫工程與環
境科學所碩士論文 (2009).
59. M. Yamasaki et al., “Differential scanning calorimetric studies on bovine serum
albumin: I. Effects of pH and ionic strength,” International Journal of Biological
Macromolecules, vol. 12, pp. 263-268, 1990.
97
60. Stefan Baier and David Julian McClements, “Impact of Preferential Interactions
on Thermal Stability and Gelation of Bovine Serum Albumin in Aqueous
Sucrose Solutions,” J. Agric. Food Chem, vol. 49, pp. 2600-2608, 2001.
61. Stefan Baier and David Julian McClements, “Combined influence of NaCl and
sucrose on hHeat-Induced gelation of bovine serum albumin,” J. Agric. Food
Chem, vol. 51, pp. 8107-8112, 2003.
62. A. Michnik et al., “Stability of bovine serum albumin at different pH,”
Journal of Thermal Analysis and Calorimetry, vol. 80, pp. 399-406, 2005.
63. G. Barone et al., “DSC studies on the denaturation and aggregation of
serumalbumins,” Thermochimica Acta, vol. 199, pp. 197-205, 1992.
64. I. Joyce et al., “Interactions Involved in the Gelation of Bovine Serum Albumin,”
J. Agric. Food Chem., vol. 44, pp. 996-1004, 1996.
65. G. Giancola et al., “DSC studies on bovine serum albumin denaturation Effects
of ionic strength and SDS concentration,” International Journal of Biological
Macromolecules, vol. 20, pp. 193-204, 1997.
66. Y. Moriyama et al., “secondary structural change of bovine serum albumin in
thermal denaturation up to 130 °C and protective effect of sodium dodecyl
sulfate on the change,” J. Phys. Chem. B, vol. 112, No. 51, 2008.
67. Y. Moriyama et al., “Protective effect of small amounts of sodium dodecyl
98
sulfate on the helical structure of bovine serum albumin in thermal denaturation,”
Journal Colloid and Interface Science, vol. 257, pp.41-46, 2003.
68. Hegg and Lo¨fqvist, “The protective effect of small amounts of anionic
detergents on the thermal aggregation of crude ovalbumin ,” Journal of Food
Science, vol. 39, pp.1231-1236, 1974.
69. Markus et al., “Mechanism of protection by anionic detergents against
denaturation of Serum Albumin,” The journal of biological chemistry, vol. 239,
no. 11, 1963.
70. E. Myers, “Formaldehyde Liberation and Cure Behavior of Urea-Formaldehyde
Resins ,” Holzforschung, vol. 44, pp.117-126, 1990.