簡易檢索 / 詳目顯示

研究生: 劉全哲
Liu, Chuan-Che
論文名稱: 鈷、鎳、銠金屬錯合物為觸媒:合成茚胺、茚酮、異喹啉酮與異吲哚啉酮衍生物之環化反應研究
Cobalt, Nickel and Rhodium Complexes as Catalyst: Synthesis of Indenamine, Indenone, Isoquinolone and Isoindolinone Derivatives Via a Annulation Methodology
指導教授: 鄭建鴻
Cheng, Chien-Hong
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 415
中文關鍵詞: 金屬催化鈷金屬催化鎳金屬催化銠金屬催化茚胺茚酮
外文關鍵詞: Metal-Catalyzed, Cobalt‑Catalyzed, Nickel-Catalyzed, Rhodium-Catalyzed, Indenamine
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是鈷、鎳、銠金屬錯合物應用在催化環化反應上的研究。第一章我們發表一種方便方法合成具有高位置位向選擇性茚胺、茚酮亞胺與茚酮衍生物,此反應以鄰鹵素苯醛、胺類與炔類當起始物,在鋅粉為還原劑鈷金屬催化條件下進行,此反應產物為茚胺衍生物與先前利用鎳、鈀金屬催化產物異喹啉衍生物不同,此外在鈷金屬與鎳金屬催化下此兩產物具有不同位置化學選擇性,並且可以被解釋。茚胺衍生物並且可以用來合成具有高生物活性的茚酮衍生物。
    在第二章的研究中,我們則是延續上一章實驗成果,在[CoI2(dppf)]/ZnCl2催化系統下,methyl 2-(2-(trimethylsilyl)ethynyl)benzoate 與o-halo-benzaldimines 進行多鍵生成反應,此反應產物為茚并異喹啉酮衍生物,此反應具有高位置化學選擇性與高產率優點。進一步在SeO2的氧化下,合成indenoisoquinolin-dione衍生物。同時順利合成具藥物活性茚并異喹啉酮衍生物2.28u與2.19,並有效提升合成效率。
    在第三章的部份,我們利用鈷金屬催化系統,發展出o-(methoxycarbonyl)phenylboronic acid 與丙炔醇或丙炔醯胺衍生物,藉由配位基改變得到兩種環化反應途徑。兩種環化反應途徑選擇性主要由兩種雙芽配位基Dppe與Dppm控制,順利合成出異色滿酮、異喹啉酮與茚酮衍生物。
    第四章中,我們利用簡單與方便的鎳金屬催化系統,成功的將2-鹵素苯醯胺與炔類進行環化反應,得到高產率異喹啉酮衍生物。此方法亦可應用起始物丙烯酯,順利得到1-異吲哚啉酮衍生物。同時順利應用在天然物oxyavicin的合成上。
    最後一個章節,利用銠金屬催化系統,將苯醯胺與炔類衍生物進行環化反應,得到異喹啉酮衍生物,反應機制藉由碳-氫鍵活化與碳-氮鍵生成。此方法亦可應用在合成1-異吲哚啉酮衍生物。


    In this thesis, we have demonstrated a series of cobalt, nickel and rhodium-catalyzed annulations and their application in organic synthesis are discussed in detail. The thesis is divided into five chapters. The first chapter explains the synthesis of indenamines, indene–enamines and indenones derivatives, the second chapter describes the preparation of indenoisoquinolinones derivatives, the third chapter describes the synthesis of indenones derivatives, the fourth and fifth chapter describes the synthesis of isoquinolone and isoindolinone derivatives.
    Chapter 1 : We have demonstrated a new three component methodology for the synthesis of substituted indenamines, indenimines and indenones via a cobalt-catalyzed three component reaction. The reaction is highly regioselective and various functionalized indenamine derivatives can be prepared. The interesting difference of products, regiochemistry and mechanisms from those of the previous nickel-catalyzed o-halobenzaldimines and alkynes that gave isoquinoline products is arisen from the different natural properties of 5-membered azametalcycles of cobalt and nickel.

    Chapter 2 : In the presence of [CoI2(dppf)] and ZnCl2, the methyl 2-(2-(trimethylsilyl)ethynyl)benzoate and its congeners undergo multiple bond forming reactions with o-halo-benzaldimines. To produce diverse kinds of indenoisoquinolinone derivatives in good to excellent yields. Further oxidation of these derivative using SeO2 results indenoisoquinolin-dione derivatives in excellent yields. Finally, as an application of these methods biologically active indenoisoquinolinone derivatives 2.28u and 2.19 were prepared in a very short fashion.

    Chapter 3 : We have demonstrated cobalt catalyzed two types of annulation reactions of o-(methoxycarbonyl)phenylboronic acid with propargyl alcohol or amide derivatives via the ligand tuning. The additional bidentate phosphine ligands gave regioselective formation of isochromanone, isoquinolinone and indenone derivatives in good to excellent yield.

    Chapter 4: We have demonstrated a easy and convenient nickel-catalyzed annulation reaction of substituted 2-halobenzamides with alkynes to give the corresponding isoquinolinone in good yields. The nickel-catalyzed annulation reactions of acrylate also proceeded smoothly to give isoindolinone derivatives in good yields. The present protocol is successfully applied to the total synthesis of oxyavicine with excellent yield.

    Chapter 5: We have successfully developed a new efficient rhodium catalyzed synthesis of substituted isoquinoline derivatives from the reaction of aromatic amides and alkynes. The transformation involves an rhodium-catalyzed C-H bond activations and C-C/C-N bond formations in one-pot. The present protocol is also successfully applied to synthesis of isoindolinone derivatives.

    目錄 目錄 I 謝誌 V 中文摘要 VII 英文摘要 IX 名詞簡稱對照表 XII 圖目錄 XIII 第一章 鈷金屬錯合物催化茚胺衍生物之合成研究 1 1.1 前言 1 1.2 過渡金屬催化合成茚、茚酚衍生物之相關文獻報導 2 1.2.1 利用過渡金屬催化合成茚衍生物 2 1.2.2 利用過渡金屬催化合成茚酚衍生物 8 1.2.3 過渡金屬催化合成異喹啉衍生物之相關文獻報導 11 1.2.4 過渡金屬催化合成茚胺衍生物之相關文獻報導 12 1.3 研究動機 14 1.4 實驗結果與討論 16 1.4.1 鈷金屬催化合成茚胺衍生物之實驗結果與討論 16 1.4.2 茚胺衍生物合成茚酮亞胺、茚酮之探討與應用 28 1.4.3 鈷金屬催化合成茚胺衍生物可能反應機構之探討 29 1.5 結論 34 1.6 實驗儀器及藥品資訊 35 1.6.1 實驗儀器簡介 35 1.6.2 藥品資訊 36 1.7 實驗步驟與光譜光據 37 1.7.1 催化劑的製備 37 1.7.2 鈷金屬錯合物催化鄰鹵苯醛、胺類、炔類進行碳合環之通用方法 37 1.7.3 茚酮亞胺衍生物 1.57之實驗方法 38 1.7.4 茚酮衍生物 1.58之實驗方法 38 1.8 參考文獻 60 第二章 鈷金屬錯合物催化合成茚并異喹啉酮衍生物之研究 62 2.1 前言 62 2.2 實驗原理與文獻探討 62 2.2.1 聯繼反應定義與優點 62 2.2.2 茚并異喹啉酮衍生物簡介 61 2.2.3 利用有機合成方法製備茚并異喹啉酮衍生物 64 2.3 研究動機 66 2.4 實驗結果與討論 69 2.4.1 鈷金屬催化合成茚并異喹啉酮衍生物之實驗結果與討論 69 2.4.2 Indenoisoquinoline-dione衍生物合成之探討 75 2.4.3 鈷金屬催化合成具藥物活性茚并異喹啉酮衍生物之應用 75 2.4.4 鈷金屬催化合成茚并異喹啉酮衍生物可能反應機構探討 78 2.5 結論 82 2.6 實驗儀器及藥品資訊 83 2.7 實驗步驟與光譜數據 83 2.7.1 催化劑的製備 83 2.7.2 炔類衍生物 2.27之實驗方法 83 2.7.3 鈷金屬錯合物催化鄰溴苯醛、胺類、炔類進行碳合環之實驗方法 84 2.7.4 Indenoisoquinoline-dione衍生物 2.29之實驗方法 84 2.7.5 茚并異喹啉酮衍生物 2.28t之實驗方法 85 2.7.6 茚并異喹啉酮衍生物 2.19之實驗方法 86 2.8 參考文獻 105 第三章 鈷金屬錯合物催化5-(甲氧羰基)苯硼酸與炔類合環反應之研究 107 3.1 前言 107 3.2 實驗原理與文獻探討 107 3.2.1 有機金屬催化方法製備茚酮衍生物之文獻探討 107 3.3 研究動機 111 3.4 實驗結果與討論 113 3.4.1 鈷金屬催化合成茚酮衍生物之實驗結果與討論 113 3.4.2 鈷金屬催化合成茚酮衍生物可能反應機構之探討 122 3.5 結論 123 3.6 實驗儀器與藥品資訊 124 3.7 實驗步驟與光譜數據 124 3.7.1 硼試劑3.15a之合成方法 124 3.7.2 丙炔醇衍生物3.13b之合成方法 125 3.7.3 丙炔醯胺衍生物 3.17l 之合成方法 125 3.7.4 鈷金屬錯合物催化硼試劑與炔類進行合環之實驗方法 126 3.8 參考文獻 136 第四章 鎳金屬錯合物催化合成異喹啉酮衍生物之研究 137 4.1 前言 137 4.2 過渡金屬催化合成異喹啉酮衍生物之相關文獻報導 138 4.3 研究動機 143 4.4 實驗結果與討論 144 4.4.1 鎳金屬催化合成異喹啉酮衍生物之實驗結果與討論 144 4.4.2 鎳金屬催化合成香豆素衍生物之實驗結果 155 4.4.3 鎳金屬催化合成1-異吲哚啉酮衍生物之實驗結果 157 4.4.4 鎳金屬催化2-鹵素苯醯胺衍生物與炔類進行環化於天然物之合成應用 162 4.4.5 鎳金屬催化2-鹵素苯醯胺衍生物與炔類進行環化可能反應機構之探討 164 4.5 結論 165 4.6 實驗儀器與藥品資訊 166 4.7 實驗步驟與光譜數據 166 4.7.1 催化劑的製備 166 4.7.2 起始物2-鹵素苯醯胺衍生物之備製方法 167 4.7.3 鎳金屬催化2-鹵素苯醯胺衍生物與炔類合成異喹啉酮衍生物4.23之實驗通用方法 168 4.7.4 合成1-異吲哚啉酮衍生物4.28c-h之實驗通用方法 169 4.7.5 化合物4.23x之備製方法 169 4.7.5 化合物4.31之備製方法 170 4.8 參考文獻 189 第五章 銠金屬錯合物催化合成異喹啉酮衍生物之研究 191 5.1 前言 191 5.2 碳-氫鍵活化相關文獻報導 191 5.2.1 鉗合效應碳-氫鍵活化反應相關文獻報導 191 5.2.2 金屬催化反應藉由碳-氫鍵活化與碳-氮鍵生成之相關文獻報導 194 5.3 研究動機 196 5.4 實驗結果與討論 197 5.4.1 銠金屬催化合成異喹啉酮衍生物之實驗結果與討論 197 5.4.2 銠金屬催化合成1-異吲哚啉酮衍生物之實驗結果 202 5.5 結論 204 5.6 實驗儀器與藥品資訊 205 5.7 實驗步驟與光譜數據 205 5.7.1 催化劑的製備 205 5.7.2 起始物2-鹵素苯醯胺衍生物之備製方法 206 5.7.3 銠金屬催化苯醯胺衍生物與炔類合成異喹啉酮衍生物5.32之實驗通用方法 206 5.8 參考文獻 213 光譜附錄 附錄一 Chapter 1之X-ray晶體數據與1H及13C NMR光譜圖 215 附錄二 Chapter 2之X-ray晶體數據與1H及13C NMR光譜圖 277 附錄三 Chapter 3之X-ray晶體數據與1H及13C NMR光譜圖 322 附錄四 Chapter 4之X-ray晶體數據與1H及13C NMR光譜圖 361 附錄五 Chapter 5之1H及13C NMR光譜圖 406

    參考文獻
    1. a) C. F. Huebner, E. M. Donoghue, A. J. Plummer, D. A. Furners, J. Med. Chem. 1966, 830-832; b) M. Froimowitz, K.-M. Wu, A. Moussa, R. M. Haidar, J. Jurayj, C. George, E. L. Gardner, J. Med. Chem. 2000, 43, 4981-4992; c) H. Yu, I.-J Kim, J. E. Folk, X. Tian, R. B. Rothman, M. H. Baumann, C. M. Dersch, J. L. F.-Anderson, D. Parrish, A. E. Jacobson, K. C. Rice, J. Med. Chem. 2004, 47, 2624-2634; d) J. E. Arrowsmith, U. Walmer, P. E. Cross, US patent 5006561, Apr 9, 1991; e) J. Barbera , O. A. Rakitin, M. B. Ros,T. Torroba, Angew. Chem. 1998, 110, 308-312; Angew. Chem. Int. Ed. 1998, 37, 296-299; f) J. Yang, M. V. Lakshmikantham, M. P. Cava, J. Org. Chem. 2000, 65, 6739-6742; g) R. Leino, P. Lehmus, A. Lehtonen, Eur. J. Inorg. Chem. 2004, 3201-3222; h) D. Leinweber, I. Weidner, R. Wilhelm, R. Wartchow, H. Butenschon, Eur. J. Org. Chem. 2005, 5224–5235.
    2. a) N. Marion, S. Diez-Gonzalez, P. de Fremont, A. R. Noble, S. P. Nolan, Angew. Chem. 2006, 118, 3729-3732; Angew. Chem. Int. Ed. 2006, 45, 3647 –3650; b) S. Brase, J. Rumper, K. Voigt, S. Albecq, G. Thurau, R. Villard, B. Waegell, A. de Meijere, Eur. J. Org. Chem. 1998, 671-678; c) S. Silver, R. Leino, Eur. J. Org. Chem. 2006, 1965–1977; d) L.-N Guo, X.-H Duan, J. Hu, H.-P Bi, X.-Y Liu, Y.-M Liang, Eur. J. Org. Chem. 2008, 1418–1425.
    3. a) D. K. Rayabarapu, C.-H.Yang, C.-H. Cheng, J. Org. Chem. 2003, 68, 6726-6731; b) K.-J. Chang, D. K.Rayabarapu, C.-H. Cheng, Org. Lett. 2003, 5, 3963.; c) K.-J. Chang, D. K.Rayabarapu, C.-H. Cheng, J. Org. Chem. 2004, 69, 4781-4787.
    4. Z. Xi, R.Guo, S. Mito, H. Yan, K. Kanno, K. Nakajima, T. Takahashi, J. Org. Chem. 2003, 68, 1252-1257.
    5. M. Lautens, T. Marquardt, J. Org. Chem. 2004, 69, 4607-4614.
    6. Y. Kuninobu, Y. Nishina, Shouho, M.; Takai, K. Angew. Chem., Int. Ed. 2006, 45, 2766-2768.
    7. Y. Kuninobu, Y. Nishina, K. Takai, Org. Lett. 2006, 8, 2891-2893.
    8. D. Zhang, Z.Liu, E. K.Yum, R. C.Larock, J. Org. Chem. 2007, 72, 251-262.
    9. a) L. G. Quan, V. Gevorgyan and Y. Yamamoto, J. Am. Chem. Soc. 1999, 121, 3545-3546. b) L. G. Quan, V. Gevorgyan and Y. Yamamoto, J. Am. Chem., Soc. 1999, 121, 9485-9486. c) V. Gevorgyan, L. G. Quan and Y. Yamamoto, Tetrahedron Lett., 1999, 40, 4089-4092.
    10. R. C. Larock, K. R.Roesch, J. Org. Chem. 1998, 63, 5306-5307.
    11. R. P. Korivi, C. H. Cheng, Org. Lett. 2005, 7, 5179-5182.
    12. a) Y. Kuninobu, A. Kawata, K. Takai, J. Am. Chem. Soc. 2005, 127, 13498-13499.;b) Y. Kuninobu, Y. Tokunage, A. Kawata, K. Takai, J. Am. Chem. Soc. 2006, 128, 202-209.
    13. H. Tsukamoto, T. Ueno, Y. Kondo, Org. Lett. 2005, 7, 5179-5182.
    14. H. G. Cheon, S. S. Kim . J. Med. Chem. 2006, 49, 4781-4784
    15. McKinney, Ronald J. Inorg. Chem. 1982, 21, 2051-2056.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE