研究生: |
蘇正國 Su, Cheng-Kuo |
---|---|
論文名稱: |
利用發光二極體激發主動Q-開關固態雷射及腔內二倍頻 LED pumped Q-switch solid-state laser and intra-cavity SHG |
指導教授: |
黃衍介
Huang, Yen-Chieh |
口試委員: |
施宙聰
Shy, Jow-Tsong 陳彥宏 Chen, Yen-Hung |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 56 |
中文關鍵詞: | 發光二極體 、Q-開關 、固態雷射 、二倍頻 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用810奈米的發光二極體激發固態雷射晶體Nd:YAG (掺釹:釔鋁石榴石),在重複頻率10Hz,脈衝寬度為1ms的準連續波(QCW)模式之下,可產生雷射輸出波長為1064 nm的脈衝能量27.43 mJ,光-光轉換效率為15.2%。在TEM00的模態輸出實驗中,可產生雷射脈衝能量5.75 mJ,光-光轉換效率為3.1%的1064 nm雷射輸出。
為了將此技術應用在工業及醫療方面,我們利用主動Q-開關腔內全固態雷射系統之架構,在重複頻率10Hz,脈衝寬度為500s的準連續波(QCW)模式之下可產生脈衝寬度為99.13 ns,脈衝能量1.97 mJ的1064 nm雷射輸出,峰值功率為19.8 kW。
使用以非線性晶體(KTP)的頻率轉換技術去獲得二倍頻532 nm的綠光雷射,在腔內加入有布魯斯特角之玻片,可產生脈衝寬度為59.73 ns,脈衝能量0.26 mJ的532 nm綠光雷射,峰值功率為4.3 kW,線性偏振輸出。將腔內布魯斯特角玻片移出後,產生脈衝寬度為98 ns,脈衝能量0.63 mJ的532 nm綠光雷射,峰值功率為6.4 kW隨機偏振的532 nm綠光雷射。
Using two 810-nm LEDs to pump a Nd:YAG crystal with 1-ms pulse width at 10-Hz rate, the output laser pulse energy and optical efficiency are 27.43 mJ and 15.2 % at 1064 nm, respectively. By inserting a 1 mm-diameter aperture into the cavity to get TEM00 mode, the output laser pulse energy and optical efficiency are 5.75 mJ and 3.1 % at 1064 nm, respectively. Then, this fundamental mode laser has more applications in comparison with multimode laser.
High laser energy is needed for industrial and medical applications. Further we put an active Q-switch module into the cavity, the output pulse energy is 1.97 mJ and pulse width is 99.13 ns, which corresponds to 19.8-kW peak power. Then, to generate second harmonic wave, we inserted a KTP crystal and microscope slide at Brewster angle into the cavity. The output pulse energy at 532 nm is 0.26 mJ and pulse width is 59.73 ns, which corresponds to 4.3-kW peak power. By removing Brewster angle microscope slide in the cavity, the output pulse energy at 532 nm is 0.63 mJ and pulse width is 98 ns, which corresponds to 6.4-kW peak power.
Steele, R. V. (2007). The story of a new light source. Nature photonics, 1(1), 25-26.
Koechner, W., & Bass, M. (2003). Solid-State Lasers: A Graduate Text. Springer Science & Business Media.
Maiman, T. H. (1960). Stimulated optical radiation in ruby. nature, 187(4736), 493-494.
Moulton, P. F. (1986). Spectroscopic and laser characteristics of Ti: Al 2 O 3. JOSA B, 3(1), 125-133.
1Verdeyen, J. T. (1989). Laser electronics. Laser electronics/2nd edition/, by JT Verdeyen, Englewood Cliffs, NJ, Prentice Hall, 1989, 640 p.
K. Y. Huang, C. K. Su, M. W. Lin, Y. C. Chiu, and Y.C. Huang, “Efficient 750-nm LED-pumped Nd:YAG laser,” Optics Express, 24(11) 12043-12054 (2016)
Yen-Chieh Huang. Principles of Nonlinear Optics.
Koechner, W. (2013). Solid-state laser engineering (Vol. 1). Springer.
Degnan, J. J. (1989). Theory of the optimally coupled Q-switched laser. IEEE Journal of Quantum Electronics, 25(2), 214-220.
Farmer, G. I., & Kiang, Y. C. (1974). Low‐current‐density LED‐pumped Nd: YAG laser using a solid cylindrical reflector. Journal of Applied Physics, 45(3), 1356-1371.
Arzu M. Ozkan, Ajay P. Malshe and William D. Brown,”Sequential multiple-laser –assisted polishing of free-standing CVD diamond substrates”, Diamond and Related Materials, 6(1997), 1789-1798
Maria Joao Branco Ferreira, Ana Macedo Ferreira, A. Pinto Soares and J.C. Fernandes Rodrigues,”Laugier-Hunziker syndrome : case report and treatment with the Q-switched Nd-YAG laser”, Journal of the European Academy of Dermatology and Venereology, 12(1999), 171-173