簡易檢索 / 詳目顯示

研究生: 林培舜
Lin, Pei-Shun
論文名稱: 雙金屬鎳鎵薄膜上二氧化碳氫化反應研究
Investigation of Carbon Dioxide Hydrogenation Reaction on Bimetallic Nickel-Gallium Thin Films
指導教授: 楊耀文
Yang, Yaw-Wen
口試委員: 林榮良
Lin, Jung-Liang
陸大安
Lu, Da-An
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 107
中文關鍵詞: 鎳鎵合金二氧化碳氫化反應室壓X光光電子能譜
外文關鍵詞: nickel-gallium, carbon dioxide hydrogenation reaction, APXPS
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自工業革命以來,工業與製造業蓬勃發展大大的提升人類的生活品質,帶來許多以往享受不到的便利,享受這些方便的同時人類也對自然造成了許多危害,特別是排放大量二氧化碳造成溫室效應,近幾年對所有生物造成莫大的威脅。於是人類開始重視二氧化碳的捕集與再利用,特別是二氧化碳氫化反應,將二氧化碳還原成甲醇、甲烷、甲酸等高經濟價值的產物,不但解決二氧化碳對人類所造成的迫害也創造龐大的碳經濟。本實驗利用新型的雙金屬鎳鎵薄膜催化劑探討二氧化碳氫化反應的反應機制,藉由國家同步輻射中心BL24A的近室壓X光光電子能譜 (Ambient Pressure X-ray Photoelectron Spectroscopy, APXPS)對鎳鎵薄膜進行二氧化碳氫化反應的臨場量測,利用APXPS臨場量測的功能及時觀測氫化反應所產生的中間物,我們製作了四種不同鎳鎵合金比例的薄膜:Ni、Ni3Ga、Ni5Ga3、NiGa2,將其傳送至APXPS分析腔體並引入數毫巴的二氧化碳與氫氣的混合氣體,藉由升溫觀察金屬薄膜上產生的反應中間物,藉此推測二氧化碳氫化反應的反應機制。
    在二氧化碳氫化反應型成甲醇的過程中,現今主要被接受的反應機制為逆向水煤氣轉化反應 (reverse water-gas shift reaction, RWGS)與甲酸根路徑 (formate pathway)。研究結果顯示,當鎳鎵合金薄膜中的鎳金屬含量較高時會產生較多的一氧化碳 (carbon monoxide, CO)、碳酸根 (carbonate, CO3)、碳酸氫根 (bicarbonate, HCO3)與沉積碳,藉此可知道高比例鎳金屬催化劑易進行二氧化碳的碳氧鍵斷裂,產生氧化鎳並與二氧化碳反應進而生成碳酸根與碳酸氫根,若適度提高鎵金屬在鎳鎵薄膜中的比例有助於甲酸根(formate)與化學吸附二氧化碳(CO2δ-)的產生,並減少一氧化碳與碳酸根的生成,由此可知鎵金屬的加入有助於抑制二氧化碳的碳氧鍵斷裂,並促進CO2δ-生成。並且我們也發現當鎳鎵薄膜中鎵金屬的比例提高時,鎳金屬的氧化現象與毒化現象明顯減少,藉此我們可知鎵金屬的加入可有效防止鎳金屬遭到氧化與毒化,不僅提升催化劑的催化性也同時增加使用時間。


    After the industrial revolution, the developing of industry and manufacturing promoted the quality of life. However, natural environment was damaged because of the greenhouse effect due to the emission of carbon dioxide. So, the scientists pay attention to capture and reuse of carbon dioxide. Carbon dioxide can be transformed into high-value products like methanol, methane, formic acid, etc. We have investigated the mechanism of hydrogenation of carbon dioxide on bimetallic nickel-gallium catalysts in this research. We measured the hydrogenation reaction of carbon dioxide on nickel-gallium thin films by using in-situ APXPS at BL24A in NSRRC, especially focusing on identifying the reaction intermediates to reveal the reaction mechanism. Four nickel-gallium thin films with different ratio were fabricated including Ni, Ni3Ga, Ni5Ga3 and NiGa2. Thin films were transferred into analysis chamber filled up with several mbar of a mixing gas of carbon dioxide and hydrogen. Thin films were then annealed to required temperatures to investigate the hydrogenation reaction of carbon dioxide.
    The widely accepted mechanisms of carbon dioxide hydrogenation reaction are the reverse water-gas shift and formate pathways. Our research results indicate that nickel-gallium thin films containing higher atomic ratios of nickel would produce more carbon monoxide, carbonate and carbide, which means a higher percentage of nickel in the catalysts is more likely to decompose carbon dioxide into carbon monoxide and atomic oxygen. At a moderate percentage of gallium, chemisorbed carbon dioxide and formate are formed in hydrogenation reaction of carbon dioxide. The addition of gallium can change the mechanism of hydrogenation reaction of carbon dioxide. We have also found that oxidation of nickel was considerably inhibited in the case of increasing gallium content. In summary, the addition of gallium in nickel can prevent nickel from oxidation in hydrogenation reaction of carbon dioxide and therefore increasing the life span of the catalysts.

    目錄 摘要.......................................i Abstract................................ iii 致謝.......................................v 圖目錄.....................................x 表目錄...................................xvi 第1章 緒論....1 1-1 前言....1 1-2 二氧化碳氫化反應...3 1-2-1 二氧化碳氫化至甲烷(CO2 methanation)...4 1-2-2 二氧化碳氫化至甲醇(CO2 hydrogenation to methanol)...5 1-2-3 雙金屬鎳鎵合金催化劑...6 1-3 二氧化碳氫化反應反應機制介紹...11 1-3-1 二氧化碳氫化至甲烷之反應機制...11 1-3-2 二氧化碳氫化至甲醇之反應機制...17 1-4 研究動機...22 第2章 實驗技術與原理簡介...23 2-1 同步輻射光源(synchrotron radiation soruce)...23 2-2 室壓X光光電子能譜(Ambient Pressure X-ray Photoelectron spectroscopy, APXPS)...27 2-2-1 X光光電子光譜原理...27 2-2-2 室壓X光光電子能譜(Ambient Pressure X-ray Photoelectron Spectroscopy, APXPS)儀器介紹...32 2-3 掃描穿隧式顯微鏡(Scanning Tunneling Microscopy, STM)...36 2-3-1 STM掃描原理...37 第3章 實驗藥品、實驗儀器系統及實驗步驟...38 3-1 實驗藥品、溶劑與氣體清單...38 3-2 實驗步驟與流程...41 3-2-1 基材前處理...41 3-2-2 雙金屬鎳鎵合金薄膜蒸鍍步驟...42 3-3 室壓X光光電子能譜表面分析系統(APXPS surface analysis system)...44 3-3-1 室壓X光光電子能譜表系統...44 3-3-2 氣體歧管系統(Gas manifold system)...46 第4章 實驗結果與討論...47 4-1 鎳鎵薄膜樣品形貌探討...47 4-2 二氧化碳吸附在鎳鎵金屬薄膜...52 4-3 二氧化碳氫化反應...55 4-3-1 純鎳薄膜...55 4-3-2 Ni3Ga薄膜...71 4-3-3 Ni5Ga3薄膜...81 4-3-4 NiGa2薄膜...90 第5章 結論...102

    1. http://e-info.org.tw/node/208498.
    2. https://km.twenergy.org.tw/Data/share?Kcet0qpp6Iwv42wyyZ3YkA==.
    3. http://e-info.org.tw/node/209042.
    4. Thambimuthu K., D. J. a. G. M., “IPCC workshop on carbon dioxide capture and storage”.
    5. Wang, W.; Wang, S.; Ma, X.; Gong, J., Recent advances in catalytic hydrogenation of carbon dioxide. Chem. Soc. Rev. 2011, 40 (7), 3703-27.
    6. http://www.sccer-hae.ch/co-electrolysis.php.
    7. P. Sabatier and J. B. Senderens, C. R. A. S., Paris, 134,514 (1902).
    8. Vannice, M. A., Catalytic Synthesis of Hydrocarbons from Carbon Monoxide and Hydrogen. In Solid State Chemistry of Energy Conversion and Storage, American Chemical Society: 1977; Vol. 163, pp 15-32.
    9. (a) Le, T. A.; Kim, M. S.; Lee, S. H.; Kim, T. W.; Park, E. D., CO and CO2 methanation over supported Ni catalysts. Catal. Today 2017, 293-294, 89-96; (b) Tada, S.; Shimizu, T.; Kameyama, H.; Haneda, T.; Kikuchi, R., Ni/CeO2 catalysts with high CO2 methanation activity and high CH4 selectivity at low temperatures. Int. J. Hydrogen Energy 2012, 37 (7), 5527-5531.
    10. Jalama, K., Carbon dioxide hydrogenation over nickel-, ruthenium-, and copper-based catalysts: Review of kinetics and mechanism. Cat. Rev. - Sci. Eng. 2017, 59 (2), 95-164.
    11. Miao, B.; Ma, S. S. K.; Wang, X.; Su, H.; Chan, S. H., Catalysis mechanisms of CO2 and CO methanation. Catal. Sci. Technol. 2016, 6 (12), 4048-4058.
    12. Schulz, H., Short history and present trends of Fischer–Tropsch synthesis. Appl. Phys. A 1999, 186 (1), 3-12.
    13. Lormand, C., Industrial Production of Synthetic Methanol. Ind. Eng. Chem. 1925, 17 (4), 430-432.
    14. Dong, X.; Li, F.; Zhao, N.; Xiao, F.; Wang, J.; Tan, Y., CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared by precipitation-reduction method. Appl. Phys. B 2016, 191, 8-17.
    15. Toyir, J.; de la Piscina, P. R.; Llorca, J.; Fierro, J.-L. G.; Homs, N., Methanol synthesis from CO2 and H2 over gallium promoted copper-based supported catalysts. Effect of hydrocarbon impurities in the CO2/H2 source. PCCP 2001, 3 (21), 4837-4842.
    16. Lim, H.-W.; Park, M.-J.; Kang, S.-H.; Chae, H.-J.; Bae, J. W.; Jun, K.-W., Modeling of the Kinetics for Methanol Synthesis using Cu/ZnO/Al2O3/ZrO2 Catalyst: Influence of Carbon Dioxide during Hydrogenation. Ind. Eng. Chem. Res. 2009, 48 (23), 10448-10455.
    17. Studt, F.; Sharafutdinov, I.; Abild-Pedersen, F.; Elkjær, C. F.; Hummelshøj, J. S.; Dahl, S.; Chorkendorff, I.; Nørskov, J. K., Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nat Chem 2014, 6 (4), 320-324.
    18. Nakamura, J.; Fujitani, T.; Kuld, S.; Helveg, S.; Chorkendorff, I.; Sehested, J., Comment on “Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts”. Science 2017, 357 (6354).
    19. Hiroshi, N.; Zhen‐Ming, H., Mechanism of methanol synthesis on Cu(100) and Zn/Cu(100) surfaces: Comparative dipped adcluster model study. Int. J. Quantum Chem. 2000, 77 (1), 341-349.
    20. Sharafutdinov, I.; Elkjær, C. F.; Pereira de Carvalho, H. W.; Gardini, D.; Chiarello, G. L.; Damsgaard, C. D.; Wagner, J. B.; Grunwaldt, J.-D.; Dahl, S.; Chorkendorff, I., Intermetallic compounds of Ni and Ga as catalysts for the synthesis of methanol. J. Catal. 2014, 320 (Supplement C), 77-88.
    21. Predel, B., Ga-Ni (Gallium-Nickel). Springer Berlin Heidelberg: Berlin, Heidelberg, 1996; p 1-4.
    22. Sharafutdinov, I., Investigations into low pressure methanol synthesis. Department of Physics, Technical University of Denmark: 2013.
    23. Chiang, C. L.; Lin, K. S.; Lin, Y. G., Preparation and Characterization of Ni5Ga3 for Methanol Formation via CO2 Hydrogenation. Top. Catal. 2017, 60 (9), 685-696.
    24. Frontera, P.; Macario, A.; Ferraro, M.; Antonucci, P., Supported Catalysts for CO2 Methanation: A Review. Catalysts 2017, 7 (2), 59.
    25. Illing, G.; Heskett, D.; Plummer, E. W.; Freund, H. J.; Somers, J.; Lindner, T.; Bradshaw, A. M.; Buskotte, U.; Neumann, M.; Starke, U.; Heinz, K.; De Andres, P. L.; Saldin, D.; Pendry, J. B., Adsorption and reaction of CO2 on Ni{110}: X-ray photoemission, near-edge X-ray absorption fine-structure and diffuse leed studies. Surf Sci. 1988, 206 (1), 1-19.
    26. Wang, S.-G.; Cao, D.-B.; Li, Y.-W.; Wang, J.; Jiao, H., Chemisorption of CO2 on Nickel Surfaces. J. Phys. Chem. B 2005, 109 (40), 18956-18963.
    27. Wang, S.-G.; Cao, D.-B.; Li, Y.-W.; Wang, J.; Jiao, H., Chemisorption of CO2 on Nickel Surfaces. The Journal of Physical Chemistry B 2005, 109 (40), 18956-18963.
    28. Roiaz, M.; Monachino, E.; Dri, C.; Greiner, M.; Knop-Gericke, A.; Schlögl, R.; Comelli, G.; Vesselli, E., Reverse Water–Gas Shift or Sabatier Methanation on Ni(110)? Stable Surface Species at Near-Ambient Pressure. J. Am. Chem. Soc. 2016, 138 (12), 4146-4154.
    29. Ding, X.; De Rogatis, L.; Vesselli, E.; Baraldi, A.; Comelli, G.; Rosei, R.; Savio, L.; Vattuone, L.; Rocca, M.; Fornasiero, P.; Ancilotto, F.; Baldereschi, A.; Peressi, M., Interaction of carbon dioxide with Ni(110): A combined experimental and theoretical study. Phy. Rev.B. 2007, 76 (19), 195425.
    30. Heine, C.; Lechner, B. A. J.; Bluhm, H.; Salmeron, M., Recycling of CO2: Probing the Chemical State of the Ni(111) Surface during the Methanation Reaction with Ambient-Pressure X-Ray Photoelectron Spectroscopy. J. Am. Chem. Soc. 2016, 138 (40), 13246-13252.
    31. Deng, X.; Verdaguer, A.; Herranz, T.; Weis, C.; Bluhm, H.; Salmeron, M., Surface Chemistry of Cu in the Presence of CO2 and H2O. Langmuir 2008, 24 (17), 9474-9478.
    32. Taifan, W.; Boily, J.-F.; Baltrusaitis, J., Surface chemistry of carbon dioxide revisited. Surf. Sci. Rep. 2016, 71 (4), 595-671.
    33. Favaro, M.; Xiao, H.; Cheng, T.; Goddard, W. A.; Yano, J.; Crumlin, E. J., Subsurface oxide plays a critical role in CO2 activation by Cu(111) surfaces to form chemisorbed CO2, the first step in reduction of CO2. Proc. Natl. Acad. Sci. U.S.A. 2017.
    34. Felix, S.; Malte, B.; L., K. E.; Nygil, T.; Stefan, Z.; Andrey, T.; Julia, S.; Elias, F.; B., V. J.; Frank, A. P.; K., N. J.; Robert, S., The Mechanism of CO and CO2 Hydrogenation to Methanol over Cu‐Based Catalysts. ChemCatChem 2015, 7 (7), 1105-1111.
    35. Kattel, S.; Yan, B.; Yang, Y.; Chen, J. G.; Liu, P., Optimizing Binding Energies of Key Intermediates for CO2 Hydrogenation to Methanol over Oxide-Supported Copper. J. Am. Chem. Soc. 2016, 138 (38), 12440-12450.
    36. Kattel, S.; Liu, P.; Chen, J. G., Tuning Selectivity of CO2 Hydrogenation Reactions at the Metal/Oxide Interface. J. Am. Chem. Soc. 2017, 139 (29), 9739-9754.
    37. Vesselli, E.; De Rogatis, L.; Ding, X.; Baraldi, A.; Savio, L.; Vattuone, L.; Rocca, M.; Fornasiero, P.; Peressi, M.; Baldereschi, A.; Rosei, R.; Comelli, G., Carbon Dioxide Hydrogenation on Ni(110). J. Am. Chem. Soc. 2008, 130 (34), 11417-11422.
    38. Liu, Q.; Han, Y.; Cai, J.; Crumlin, E. J.; Li, Y.; Liu, Z., CO2 Activation on Cobalt Surface in the Presence of H2O: An Ambient-Pressure X-ray Photoelectron Spectroscopy Study. Catal. Lett. 2018.
    39. Vesselli, E.; Rizzi, M.; De Rogatis, L.; Ding, X.; Baraldi, A.; Comelli, G.; Savio, L.; Vattuone, L.; Rocca, M.; Fornasiero, P.; Baldereschi, A.; Peressi, M., Hydrogen-Assisted Transformation of CO2 on Nickel: The Role of Formate and Carbon Monoxide. J. Phys. Chem. Lett 2010, 1 (1), 402-406.
    40. Kattel, S.; Ramírez, P. J.; Chen, J. G.; Rodriguez, J. A.; Liu, P., Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science 2017, 355 (6331), 1296-1299.
    41. Graciani, J.; Mudiyanselage, K.; Xu, F.; Baber, A. E.; Evans, J.; Senanayake, S. D.; Stacchiola, D. J.; Liu, P.; Hrbek, J.; Sanz, J. F.; Rodriguez, J. A., Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science 2014, 345 (6196), 546-550.
    42. https://www.nsrrc.org.tw/.
    43. http://engenhamentos.blogspot.tw/2014/06/caracterizacao-de-materiais-por-xps.html.
    44. https://wiki.utep.edu/pages/viewpage.action?pageId=51217510.
    45. https://www.ekexiu.com/shtml/a/20180103/103324.html.
    46. http://xpssimplified.com/elements/nickel.php.
    47. http://mmrc.caltech.edu/SS_XPS/XPS_PPT/XPS_Slides.pdf.
    48. Starr, D. E.; Liu, Z.; Havecker, M.; Knop-Gericke, A.; Bluhm, H., Investigation of solid/vapor interfaces using ambient pressure X-ray photoelectron spectroscopy. Chem. Soc. Rev. 2013, 42 (13), 5833-5857.
    49. Binnig, G.; Rohrer, H., Scanning tunneling microscopy. Surf Sci. 1983, 126 (1), 236-244.
    50. Ferreira, Q.; Brotas, G.; Alcacer, L.; Morgado, J. In Characterization of self-assembled monolayers of thiols on gold using scanning tunneling microscopy, 2009.
    51. http://ezphysics.nchu.edu.tw/prophys/modern_physics/STMeducation3hrs.pdf.
    52. Yuan, K.; Zhong, J.-Q.; Zhou, X.; Xu, L.; Bergman, S. L.; Wu, K.; Xu, G. Q.; Bernasek, S. L.; Li, H. X.; Chen, W., Dynamic Oxygen on Surface: Catalytic Intermediate and Coking Barrier in the Modeled CO2 Reforming of CH4 on Ni (111). ACS Catal. 2016, 6 (7), 4330-4339.
    53. Yuan, K.; Zhong, J.-Q.; Sun, S.; Ren, Y.; Zhang, J. L.; Chen, W., Reactive Intermediates or Inert Graphene? Temperature- and Pressure-Determined Evolution of Carbon in the CH4–Ni(111) System. ACS Catal. 2017, 7 (9), 6028-6037.
    54. Rameshan, R.; Mayr, L.; Klötzer, B.; Eder, D.; Knop-Gericke, A.; Hävecker, M.; Blume, R.; Schlögl, R.; Zemlyanov, D. Y.; Penner, S., Near-Ambient-Pressure X-ray Photoelectron Spectroscopy Study of Methane-Induced Carbon Deposition on Clean and Copper-Modified Polycrystalline Nickel Materials. J. Phys. Chem. C 2015, 119 (48), 26948-26958.
    55. Behm, R. J.; Brundle, C. R., On the formation and bonding of a surface carbonate on Ni(100). Surf Sci. 1991, 255 (3), 327-343.
    56. Changming, L.; Yudi, C.; Shitong, Z.; Junyao, Z.; Fei, W.; Shan, H.; Min, W.; G., E. D.; Xue, D., Nickel–Gallium Intermetallic Nanocrystal Catalysts in the Semihydrogenation of Phenylacetylene. ChemCatChem 2014, 6 (3), 824-831.
    57. Mansour, A. N., Nickel Monochromated Al Kα XPS Spectra from the Physical Electronics Model 5400 Spectrometer. Surf. Sci. Spectra 1994, 3 (3), 221-230.
    58. Mansour, A. N., Characterization of NiO by XPS. Surf. Sci. Spectra 1994, 3 (3), 231-238.
    59. Alemozafar, A. R.; Madix, R. J., The Role of Surface Deconstruction in the Autocatalytic Decomposition of Formate and Acetate on Ni(110). J. Phys. Chem. B 2004, 108 (38), 14374-14383.
    60. Carli, R.; Bianchi, C. L., XPS analysis of gallium oxides. Appl. Surf. Sci. 1994, 74 (1), 99-102.

    QR CODE