研究生: |
王利元 Wang, Li-Yuan |
---|---|
論文名稱: |
探討動手做實驗及虛擬實驗對國小學童在電磁鐵單元的學習成就及概念理解之影響 Effects of experimenting with physical and virtual manipulative on students’ learning achievement and conceptual understanding in electromagnet |
指導教授: |
王姿陵
Wang, Tzu-Ling |
口試委員: |
盧秀琴
Lu, Hsiu-Chin 袁媛 Yuan, Yuan |
學位類別: |
碩士 Master |
系所名稱: |
竹師教育學院 - 數理教育研究所 Graduate Institute of Mathematics and Science Education |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 66 |
中文關鍵詞: | 動手做實驗 、虛擬實驗 、電磁鐵 、學習成就 、概念理解 |
外文關鍵詞: | physical manipulatives, virtual manipulatives, electromagnet, learning achievement, conceptual understanding |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討於國小階段自然與生活科技課程使用虛擬實驗的不同時機(活動一、活動二、活動三以及全部活動),對國小六年級學生科學學習成就與科學概念理解的影響。
本研究共分四組實驗組,實驗組A(虛擬實驗→動手做實驗→動手做實驗)、實驗組B(動手做實驗→虛擬實驗→動手做實驗)、實驗組C(動手做實驗→動手做實驗→虛擬實驗)以及實驗組D(虛擬實驗→虛擬實驗→虛擬實驗)。參與的樣本來自一所桃園市都會區公立國小六年級四個班級的學生,共105人。研究工具包含電磁鐵成就測驗和電磁鐵二階診斷測驗。資料分析方法包含:敘述統計(descriptive statistics)、卡方檢定(chi-square)以及皮爾森積差相關(Pearson product-moment correlation coefficient)。
本研究的重要發現如下:
一、進入教材內容抽象程度較高的活動使用虛擬實驗能有助學生學習成就。
二、配合教學目標選擇動手做實驗或虛擬實驗學生能有助學習成就。
三、教材內容較抽象時使用虛擬實驗能有助學生達到正確科學概念理解。
四、自然科學成就測驗表現較佳的學生不一定具備正確的概念理解。
This major purpose of the study is to explore the impact of using virtual manipulatives at different timing in the implementation of science curriculums(activity one、activity two、activity three and all activity) on sixth grade elementary school students’ science achievement and conceptual understanding.
This study included four teaching strategies. Experimental group A (virtual manipulatives → physical manipulatives → physical manipulatives), experimental group B (physical manipulatives → virtual manipulatives → physical manipulatives), experimental group C (physical manipulatives → physical manipulatives → virtual manipulatives) and experimental group D (virtual manipulatives → virtual manipulatives → virtual manipulatives). Four sixth grade classes from Taoyuan city metropolitan area, a total of 105 participants. The instruments of this study include: the electromagnet achievement test and the electromagnet second-order diagnostic test. Data analysis methods include descriptive statistics, chi-square and Pearson product-moment correlation coefficients.
The major findings of this study are as follows:
1. The use of virtual manipulatives for the activities of higher abstraction can help students get better performance and achievement.
2. Corresponded with the teaching objectives, choosing physical manipulatives or virtual manipulatives can help students learn better and have great performance.
3. Students can easily achieve the correct conception of science as the materials with higher abstraction in virtual manipulatives.
4. Students many not have the correct understanding of the scientific concepts as their achievement test is good in science class.
一、 中文部份
劉燿誠(2008)。應用二階式概念診斷測驗探究中學生生物恆定性知另有概念。國立彰化師範大學生物學系碩士論文。
楊坤元、張賴妙理(2004)。發展和應用二階式診斷工具來偵測國中一年級學生知遺傳學另有概念。科學教育學刊,12(1),107-131。
洪榮炎(2002)。多元評量模式對國小學童自然科認知能力的區辨性及預測性之研究─以「電磁鐵」、「電動機」為例。國立嘉義大學國民教育研究所碩士論文。
葉誌鑑(2001)。國小高年級學童電磁鐵概念分析之研究。台北市立師範學院科學 教育研究所碩士論文。
二、 英文部分
Carey, S. (2000). The Origin of Concepts. Cognition and Development, 1(1), 37-41. doi: 10.1207/S15327647JCD0101N_3
Chini, J. J., Madsen, A., Gire, Elizabeth., Rebello, S. N., & Puntambekar, S. (2012). Exploration of factors that affect the comparative effectiveness of physical and virtual manipulatives in an undergraduate laboratory. Physical Review Special Topics - Physics Education Research, 8, (010113), 1-12.
de Jong, T., Linn, C. M., & Zacharia, C. Z. (2013). Physical and Virtual Laboratories in Science and Engineering Education. Science, 340, 305-308. doi: 10.1126/science.1230579
Gire, E., Carmichael, A., Chini, J. J., Rouinfar, A., Rebello, S., Smith, G., & Puntambekar, S. (2010). The effects of physical and virtual manipulatives on students' conceptual learning about pulleys. International Conference of the Learning Sciences, 10(9), 937-943.
Hewson, W. P. (1981). A Conceptual Change Approach to Learning Science. Science Education, 3(4), 383-396. doi: 10.1080/0140528810304004
Hewson, G. M., & Hewson, W. P. (1983). Effect of instruction using students' prior knowledge and conceptual change strategies on science learning. Journal of Research in Science Teaching, 20(8), 731-743. doi: 10.1002/tea.3660200804
Jaakkola, T., & Nurmi, S. (2008). Fostering elementary school students’ understanding of simple electricity by combining simulation and laboratory activities. Journal of Computer Assisted Learning, 24, 271-283. doi: 10.1111/j.1365-2729.2007.00259.x
Jaakkola, T., Nurmi, S., & Veermans, K. (2011). A Comparison of Students’ Conceptual Understanding of Electric Circuits in Simulation Only and Simulation-Laboratory Contexts. Journal of Research in Science Teaching, 48(1), 71-93. doi: 10.1002/tea.20386
Jiménez, M. P., Pedrajas, P. A., & Polo, J. (2003). Learning in Chemistry with Virtual Laboratories. Journal of Chemical Education, 80(3), 346-352.
Lee, Y., & Law, N. (2001). Explorations in promoting conceptual change in electrical concepts via ontological category shift. Science Education, 23(2), 111-149. doi: 10.1080/09500690119851
Nussbaum, J., & Novick, S. (1982). Alternative frameworks, conceptual conflict and accommodation: Toward a principled teaching strategy. Instructional Science, 11(3), 183-200. doi: 10.1007/BF00414279
Özmen, H. (2008). Determination of students' alternative conceptions about chemical equilibrium: a review of research and the case of Turkey. Chemistry Education Research and Practice, 9, 225-233. doi: 10.1039/B812411F
Olympiou, G., & Zacharia, C. Z. (2012). Blending Physical and Virtual Manipulatives: An Effort to Improve Students’ Conceptual Understanding Through Science Laboratory Experimentation. Science Education, 96(1), 21-47. doi: 10.1002/sce.20463
Olympiou, G., Zacharia, C. Z., & de Jong, T. (2013). Making the invisible visible: enhancing students’ conceptual understanding by introducing representations of abstract objects in a simulation. Instructional Science, 41, 575-596. doi: 10.1007/s11251-012-9245-2
Planinic1, M., Boone, J. W., Krsnik, R., & Beilfuss, L. M. (2006). Exploring alternative conceptions from Newtonian dynamics and simple DC circuits: Links between item difficulty and item confidence. Journal of Research in Science Teaching, 43(2), 150-171. doi: 10.1002/tea.20101
Renkena, D. M., & Nunezb, N. (2013). Computer simulations and clear observations do not guarantee conceptual understanding. Learning and Instruction, 23, 10-23. doi: 10.1016/j.learninstruc.2012.08.006
Toth, E. E., Ludvico, R. L., & Morrow, L. B. (2014). Blended inquiry with hands-on and virtual laboratories: the role of perceptual features during knowledge construction. Interactive Learning Environments, 22(5), 614-630. doi: 10.1080/10494820.2012.693102
Toth, E. E., Morrow, L. B., & Ludvico, R. L. (2009). Designing Blended Inquiry Learning in a Laboratory Context: A Study of Incorporating Hands-On and Virtual Laboratories. Innovative Higher Education, 33, 333-344. doi: 10.1007/s10755-008-9087-7
Winn, J., & Shotton, J. (2006). The Layout Consistent Random Field for Recognizing and Segmenting Partially Occluded Objects. Computer Vision and Pattern Recognition, 1, 37-44. doi: 10.1109/CVPR.2006.305
Zacharia, C. Z. (2007). Comparing and combining real and virtual experimentation: an effort to enhance students’ conceptual understanding of electric circuits. Journal of Computer Assisted Learning, 23, 120-132. doi: 10.1111/j.1365-2729.2006.00215.x
Zacharia, C. Z., & de Jong, T. (2014). The Effects on Students’ Conceptual Understanding of Electric Circuits of Introducing Virtual Manipulatives Within a Physical Manipulatives-Oriented Curriculum. Cognition and Instruction, 32(2), 101-158. doi: 10.1080/07370008.2014.887083
Zacharia, C. Z., & Olympiou, G. (2011). Physical versus virtual manipulative experimentation in physics learning. Learning and Instruction, 21, 317-331. doi: 10.1016/j.learninstruc.2010.03.001
Zacharia, C. Z., Olympiou, G., & Papaevripidou, M. (2008). Effects of Experimenting with Physical and Virtual Manipulatives on Students’ Conceptual Understanding in Heat and Temperature. Journal of Research in Science Teaching, 45(9), 1021-1035. doi: 10.1002/tea.20260