簡易檢索 / 詳目顯示

研究生: 王利元
Wang, Li-Yuan
論文名稱: 探討動手做實驗及虛擬實驗對國小學童在電磁鐵單元的學習成就及概念理解之影響
Effects of experimenting with physical and virtual manipulative on students’ learning achievement and conceptual understanding in electromagnet
指導教授: 王姿陵
Wang, Tzu-Ling
口試委員: 盧秀琴
Lu, Hsiu-Chin
袁媛
Yuan, Yuan
學位類別: 碩士
Master
系所名稱: 竹師教育學院 - 數理教育研究所
Graduate Institute of Mathematics and Science Education
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 66
中文關鍵詞: 動手做實驗虛擬實驗電磁鐵學習成就概念理解
外文關鍵詞: physical manipulatives, virtual manipulatives, electromagnet, learning achievement, conceptual understanding
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討於國小階段自然與生活科技課程使用虛擬實驗的不同時機(活動一、活動二、活動三以及全部活動),對國小六年級學生科學學習成就與科學概念理解的影響。
    本研究共分四組實驗組,實驗組A(虛擬實驗→動手做實驗→動手做實驗)、實驗組B(動手做實驗→虛擬實驗→動手做實驗)、實驗組C(動手做實驗→動手做實驗→虛擬實驗)以及實驗組D(虛擬實驗→虛擬實驗→虛擬實驗)。參與的樣本來自一所桃園市都會區公立國小六年級四個班級的學生,共105人。研究工具包含電磁鐵成就測驗和電磁鐵二階診斷測驗。資料分析方法包含:敘述統計(descriptive statistics)、卡方檢定(chi-square)以及皮爾森積差相關(Pearson product-moment correlation coefficient)。
    本研究的重要發現如下:
    一、進入教材內容抽象程度較高的活動使用虛擬實驗能有助學生學習成就。
    二、配合教學目標選擇動手做實驗或虛擬實驗學生能有助學習成就。
    三、教材內容較抽象時使用虛擬實驗能有助學生達到正確科學概念理解。
    四、自然科學成就測驗表現較佳的學生不一定具備正確的概念理解。


    This major purpose of the study is to explore the impact of using virtual manipulatives at different timing in the implementation of science curriculums(activity one、activity two、activity three and all activity) on sixth grade elementary school students’ science achievement and conceptual understanding.
    This study included four teaching strategies. Experimental group A (virtual manipulatives → physical manipulatives → physical manipulatives), experimental group B (physical manipulatives → virtual manipulatives → physical manipulatives), experimental group C (physical manipulatives → physical manipulatives → virtual manipulatives) and experimental group D (virtual manipulatives → virtual manipulatives → virtual manipulatives). Four sixth grade classes from Taoyuan city metropolitan area, a total of 105 participants. The instruments of this study include: the electromagnet achievement test and the electromagnet second-order diagnostic test. Data analysis methods include descriptive statistics, chi-square and Pearson product-moment correlation coefficients.
    The major findings of this study are as follows:
    1. The use of virtual manipulatives for the activities of higher abstraction can help students get better performance and achievement.
    2. Corresponded with the teaching objectives, choosing physical manipulatives or virtual manipulatives can help students learn better and have great performance.
    3. Students can easily achieve the correct conception of science as the materials with higher abstraction in virtual manipulatives.
    4. Students many not have the correct understanding of the scientific concepts as their achievement test is good in science class.

    第一章 緒論 1 第一節 研究動機 1 第二節 研究目的與問題 3 第三節 名詞釋義 3 第四節 研究範圍與限制 3 第二章 文獻探討 4 第一節 動手做實驗與虛擬實驗的優勢 4 第二節 結合動手做及虛擬實驗融入教學的實徵研究 7 第三章 研究方法與設計 10 第一節 研究設計 11 第二節 研究流程 15 第三節 研究對象 18 第四節 研究工具 18 第五節 實驗教學教材內容 21 第六節 資料收集與分析 27 第四章 研究結果與討論 29 第一節 不同時機使用虛擬實驗融入教學對自然科學習成就的影響 29 第二節 不同時機使用虛擬實驗融入教學對自然科學習概念理解的影響 32 第三節 學習成就與概念理解的相關性 43 第五章 結論與建議 44 參考文獻 47 一、中文部份 47 二、英文部份 47 附錄 50 附錄一 教案設計 50 附錄二 電磁鐵二階式問卷 56 附錄三 電磁鐵成就測驗 59 附錄四 虛擬實驗軟體操作畫面 62

    一、 中文部份
    劉燿誠(2008)。應用二階式概念診斷測驗探究中學生生物恆定性知另有概念。國立彰化師範大學生物學系碩士論文。
    楊坤元、張賴妙理(2004)。發展和應用二階式診斷工具來偵測國中一年級學生知遺傳學另有概念。科學教育學刊,12(1),107-131。
    洪榮炎(2002)。多元評量模式對國小學童自然科認知能力的區辨性及預測性之研究─以「電磁鐵」、「電動機」為例。國立嘉義大學國民教育研究所碩士論文。
    葉誌鑑(2001)。國小高年級學童電磁鐵概念分析之研究。台北市立師範學院科學 教育研究所碩士論文。
    二、 英文部分
    Carey, S. (2000). The Origin of Concepts. Cognition and Development, 1(1), 37-41. doi: 10.1207/S15327647JCD0101N_3
    Chini, J. J., Madsen, A., Gire, Elizabeth., Rebello, S. N., & Puntambekar, S. (2012). Exploration of factors that affect the comparative effectiveness of physical and virtual manipulatives in an undergraduate laboratory. Physical Review Special Topics - Physics Education Research, 8, (010113), 1-12.
    de Jong, T., Linn, C. M., & Zacharia, C. Z. (2013). Physical and Virtual Laboratories in Science and Engineering Education. Science, 340, 305-308. doi: 10.1126/science.1230579
    Gire, E., Carmichael, A., Chini, J. J., Rouinfar, A., Rebello, S., Smith, G., & Puntambekar, S. (2010). The effects of physical and virtual manipulatives on students' conceptual learning about pulleys. International Conference of the Learning Sciences, 10(9), 937-943.
    Hewson, W. P. (1981). A Conceptual Change Approach to Learning Science. Science Education, 3(4), 383-396. doi: 10.1080/0140528810304004
    Hewson, G. M., & Hewson, W. P. (1983). Effect of instruction using students' prior knowledge and conceptual change strategies on science learning. Journal of Research in Science Teaching, 20(8), 731-743. doi: 10.1002/tea.3660200804
    Jaakkola, T., & Nurmi, S. (2008). Fostering elementary school students’ understanding of simple electricity by combining simulation and laboratory activities. Journal of Computer Assisted Learning, 24, 271-283. doi: 10.1111/j.1365-2729.2007.00259.x
    Jaakkola, T., Nurmi, S., & Veermans, K. (2011). A Comparison of Students’ Conceptual Understanding of Electric Circuits in Simulation Only and Simulation-Laboratory Contexts. Journal of Research in Science Teaching, 48(1), 71-93. doi: 10.1002/tea.20386
    Jiménez, M. P., Pedrajas, P. A., & Polo, J. (2003). Learning in Chemistry with Virtual Laboratories. Journal of Chemical Education, 80(3), 346-352.
    Lee, Y., & Law, N. (2001). Explorations in promoting conceptual change in electrical concepts via ontological category shift. Science Education, 23(2), 111-149. doi: 10.1080/09500690119851
    Nussbaum, J., & Novick, S. (1982). Alternative frameworks, conceptual conflict and accommodation: Toward a principled teaching strategy. Instructional Science, 11(3), 183-200. doi: 10.1007/BF00414279
    Özmen, H. (2008). Determination of students' alternative conceptions about chemical equilibrium: a review of research and the case of Turkey. Chemistry Education Research and Practice, 9, 225-233. doi: 10.1039/B812411F
    Olympiou, G., & Zacharia, C. Z. (2012). Blending Physical and Virtual Manipulatives: An Effort to Improve Students’ Conceptual Understanding Through Science Laboratory Experimentation. Science Education, 96(1), 21-47. doi: 10.1002/sce.20463
    Olympiou, G., Zacharia, C. Z., & de Jong, T. (2013). Making the invisible visible: enhancing students’ conceptual understanding by introducing representations of abstract objects in a simulation. Instructional Science, 41, 575-596. doi: 10.1007/s11251-012-9245-2
    Planinic1, M., Boone, J. W., Krsnik, R., & Beilfuss, L. M. (2006). Exploring alternative conceptions from Newtonian dynamics and simple DC circuits: Links between item difficulty and item confidence. Journal of Research in Science Teaching, 43(2), 150-171. doi: 10.1002/tea.20101
    Renkena, D. M., & Nunezb, N. (2013). Computer simulations and clear observations do not guarantee conceptual understanding. Learning and Instruction, 23, 10-23. doi: 10.1016/j.learninstruc.2012.08.006
    Toth, E. E., Ludvico, R. L., & Morrow, L. B. (2014). Blended inquiry with hands-on and virtual laboratories: the role of perceptual features during knowledge construction. Interactive Learning Environments, 22(5), 614-630. doi: 10.1080/10494820.2012.693102
    Toth, E. E., Morrow, L. B., & Ludvico, R. L. (2009). Designing Blended Inquiry Learning in a Laboratory Context: A Study of Incorporating Hands-On and Virtual Laboratories. Innovative Higher Education, 33, 333-344. doi: 10.1007/s10755-008-9087-7
    Winn, J., & Shotton, J. (2006). The Layout Consistent Random Field for Recognizing and Segmenting Partially Occluded Objects. Computer Vision and Pattern Recognition, 1, 37-44. doi: 10.1109/CVPR.2006.305
    Zacharia, C. Z. (2007). Comparing and combining real and virtual experimentation: an effort to enhance students’ conceptual understanding of electric circuits. Journal of Computer Assisted Learning, 23, 120-132. doi: 10.1111/j.1365-2729.2006.00215.x
    Zacharia, C. Z., & de Jong, T. (2014). The Effects on Students’ Conceptual Understanding of Electric Circuits of Introducing Virtual Manipulatives Within a Physical Manipulatives-Oriented Curriculum. Cognition and Instruction, 32(2), 101-158. doi: 10.1080/07370008.2014.887083
    Zacharia, C. Z., & Olympiou, G. (2011). Physical versus virtual manipulative experimentation in physics learning. Learning and Instruction, 21, 317-331. doi: 10.1016/j.learninstruc.2010.03.001
    Zacharia, C. Z., Olympiou, G., & Papaevripidou, M. (2008). Effects of Experimenting with Physical and Virtual Manipulatives on Students’ Conceptual Understanding in Heat and Temperature. Journal of Research in Science Teaching, 45(9), 1021-1035. doi: 10.1002/tea.20260

    QR CODE