簡易檢索 / 詳目顯示

研究生: 陳昂佑
Chen,Ang-Yu
論文名稱: 伴隨函數用於蒙地卡羅計算法變異數降低技巧之建立與應用
Implementation and Application of Adjoint Function Methodology in Variance Reduction of Monte Carlo Calculation
指導教授: 薛燕婉
Liu,Yen-Wan Hsueh
許榮鈞
Sheu,Rong-Jiun
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2008
畢業學年度: 97
語文別: 中文
論文頁數: 90
中文關鍵詞: BNCT照射室輻射屏蔽蒙地卡羅計算變異降低伴隨函數應用貯存護箱
外文關鍵詞: BNCT treatment room, radiation shielding, Monte Carlo simulation, variance reduction, adjoint function-derived weight window, spent fuel storage cask
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究所建立之TORT-coupled MCNP計算法,乃是以CADIS演算法為基礎,自行將TORT伴隨計算所得的伴隨函數,轉換為蒙地卡羅程式MCNP使用變異數降低技巧所需之「重要性加權射源」與「重量視窗」,以提高MCNP追蹤粒子之計算效率。此法可有效的降低MCNP計算所得結果之變異數,特別是對大體積分佈射源或是深穿透的問題。首先透過小型PWR壓力槽問題,驗證所建立計算法之正確性。然後將其應用在兩個困難的屏蔽問題:清華大學水池式反應器THOR之硼中子捕獲治療(BNCT)照射室門外劑量之評估,與用過核燃料貯存護箱表面劑量率計算。
    在BNCT照射室門外劑量計算問題中,粒子通率自射源至照射室活動門外處衰減達七個次冪。因此蒙地卡羅法計算中使用有效的變異數降低技巧是非常必需的。研究結果發現,相對於未使用變異數降低技巧之MCNP計算,TORT-coupled MCNP計算法對BNCT照射室門外劑量率之計算效率可改善100至1000倍。由於二次光子是該處劑量之主要貢獻者,進一步對光子權重視窗進行調整做最佳化處理,可額外改善50~75%之計算效率。
    本研究第二個實際案例:台電貯存護箱表面劑量率評估計算,是一個深穿透、輻射源分佈範圍廣大、牽涉到輻射潺流效應的高難度屏蔽計算問題。對這樣一個困難的輻射安全評估問題,蒙地卡羅計算必須搭配有效的變異數降低技巧,才能在合理計算時間內獲得統計誤差可接受的計算結果。除了TORT-coupled MCNP計算法外,本研究亦使用了其他兩種計算法,分別是傳統的MCNP搭配幾何分裂變異數降低技巧,與業界常用之SAS4分析程式。本研究完整比對了三種計算方法計算護箱表面各處之劑量率所得結果之準確性及計算效率。研究結果發現,本研究所建立之TORT-coupled MCNP計算法基於其有效且具一致性的射源加權與遷移加權變異數降低技巧,使其計算結果準確可靠,且其整體計算效率在這三種不同的計算方法當中是最高的。


    The TORT-coupled MCNP method established in this study is an implementation of the consistent adjoint driven importance sampling (CADIS) methodology for Monte Carlo variance reduction. It utilizes the deterministic TORT adjoint function to perform source biasing and consistent transport biasing with weight window technique in the MCNP Monte Carlo simulation. It has been proved to be very effective in accelerating the MCNP calculations especially for those cases involving distributed sources and/or deep-penetration problem. The method is first verified by a benchmark calculation for a small PWR pressure vessel problem. After that, we have successfully applied this method in two real world difficult shielding problems: one is the shielding evaluation of the BNCT treatment room at Tsing Hua Open-pool reactor (THOR), and the other is the surface dose rate calculation for a spent fuel storage cask.
    In the first case for the shielding evaluation of the BNCT treatment room at THOR, the radiation attenuation from beam exit to detector outside the treatment room is more than seven orders of magnitudes. This is why an effective variance reduction technique is very important for solving this problem by Monte Carlo simulation. We have demonstrated that, with this method, the computational efficiency can be improved significantly by two to three orders of magnitude compared to an analog MCNP calculation. Since the neutron-induced secondary gamma rays are the main contribution to the total dose outside the treatment room, we have found that further optimization of the photon weight windows can lead to additional 50-75% improvement in the overall computational efficiency.
    In the second case for the surface dose rate calculations of the NAC-UMS spent fuel storage cask, it involves difficult problems of deep penetration and radiation streaming resulting from a large volumetric source. Effective variance reduction techniques are indispensable for a Monte Carlo simulation to obtain results of small statistic errors within reasonable computing time. In addition to the TORT-coupled MCNP method, we also adopted two conventional techniques in this problem, i.e. the traditional cell importance method in MCNP and the popular SAS4 analysis sequence in the SCALE5.1 package. This study thoroughly compares the accuracy and computation efficiencies of MCNP and SAS4 in the surface dose rate calculation of the NAC-UMS storage cask. Due to the effective source biasing and consistent transport biasing, the TORT-coupled MCNP calculation shows overall a superior computation efficiency in this case study.

    摘要 i Abstract ii 致謝 iv 目錄 v 表目錄 vii 圖目錄 viii 第一章 前言 1 第二章 TORT-coupled MCNP計算方法之理論基礎與驗證 3 2.1 伴隨運算子之理論推導 3 2.2 伴隨函數之物理意義 4 2.3 粒子重要性直接推導 6 2.4 遷移計算與伴隨計算之運算子差異 8 2.5 TORT與MCNP程式之基本差異 8 2.6 蒙地卡羅法MCNP與重要性函數 9 2.7 CADIS理論與MCNP計算 10 2.8 CADIS理論、伴隨函數及其應用之再檢視 14 2.9 TORT-coupled MCNP計算方法之實作 16 2.10 TORT-coupled MCNP計算方法之驗證 17 第三章 清華大學水池式反應器THOR之BNCT照射室門外劑量之評估 21 3.1 BNCT簡介 21 3.2 BNCT照射室結構 22 3.3 TORT-coupled MCNP計算 24 3.4 計算結果與討論 24 3.4.1粒子通率及劑量率結果 24 3.4.2權重視窗調整及能群濃縮的效果 29 3.4.3屏蔽改善 34 3.5 BNCT照射室門外劑量計算結論 35 第四章 用過核燃料貯存護箱表面劑量率計算 37 4.1 簡介 37 4.2 貯存護箱屏蔽問題之文獻回顧 37 4.3 問題描述及計算方式 38 4.3.1 NAC-UMS貯存護箱簡介 38 4.3.2 輻射源說明 40 4.3.3 計數偵檢器 41 4.3.4 計算方法 41 4.4 結果與討論 45 4.4.1 中子射源造成之護箱表面劑量率之計算結果 45 4.4.2 燃料光子射源之計算結果 52 4.4.3 活化光子射源之計算結果 57 4.4.4 總劑量率之計算結果 61 4.5 伴隨函數之效用 65 4.5.1 中子射源之變異數降低技巧 65 4.5.2 光子射源之變異數降低技巧 69 4.6 用過核燃料貯存護箱劑量率計算之結論 76 第五章 結論與未來研究方向 79 參考文獻 82 附錄A 伴隨運算子之理論推導 86 附錄B SAS4之軸向加權取樣函數 88

    ANS, 1977. Neutron and gamma-ray fluence-to-dose factors, ANSI/ANS-6.1.1-1977. American Nuclear Society, La Grange Park, IL.
    ANS, 1991. Neutron and gamma-ray fluence-to-dose factors, ANSI/ANS-6.1.1-1991. American Nuclear Society, La Grange Park, IL.
    Bowman, S.M., Dunn, M.E., Hollenbach, D.F., Jordan, W.C., 2006. SCALE cross-section libraries. ORNL/TM-2005/39, Version 5.1, Vol. III, Sect. M4, Oak Ridge National Laboratory, Oak Ridge, TN.
    Briesmeister, J.F, (Ed.), 2000. MCNP - A General Monte Carlo N-Particle Transport Code, Version 4C. LA-13709-M. Los Alamos National Laboratory, USA.
    Broadhead, B.L., Tang, J.S., Childs, R.L., Parks, C.V., Taniuchi, H., 1997. Evaluation of shielding analysis methods in spent-fuel cask environments. Nucl. Tech. 117, 206-222.
    Broadhead, B.L., Wagner, J.C., 2005. Effective biasing schemes for duct streaming problems. Radiat. Prot. Dosim. 116, 504-507.
    George I.B., Glasstone, S., 1970. Nuclear Reactor Theory. Van Nostrand Reinhold Company.
    Haghighat, A et al., 1993. Estimation of Neutron Source Uncertainties in Pressure Vessel Fluence Calculation. Trans. Am. Nucl. Soc., 69, 459.
    Haghighat, A et al., 1995. Evaluation of the Uncertainties in the Source Distribution for Pressure Vessel Neutron Fluence Calculations. Nucl. Technol., 109, 54.
    Haghighat, A., Wagner, J.C., 2003. Monte Carlo variance reduction with deterministic importance functions. Prog. in Nucl. Ener. 42, 25.
    Hoogenboom, J.E., Legrady, D., 2005. A critical review of the weight window generator in MCNP. In: Proceedings of the Monte Carlo 2005 Topical Meeting, Chattanooga, Tennessee. American Nuclear Society, LaGrange Park, IL, pp. 1–14.
    Kageji, T., Mizobuchi, Y., Nagahiro, S., Nakagawa, Y., Kumada, H., 2006. Correlation between BNCT radiation dose and histopathological findings in BSH-based intra-operative BNCT for malignant glioma. In: Proceedings of the ICNCT-12, 12th International Congress on Neutron Capture Therapy, Kagawa, Japan, pp. 35–36.
    Kato, I., Ono, K., Sakurai, Y., Ohmae, M., Kamida, A., Fujita, Y., Obayashi, S., Maruhashi, A., Imahori, Y., Kirihata, M., Nakazawa, M., Yura, Y., 2006. Boron neutron capture therapy for recurrent head and neck malignancies. In: Proceedings of the ICNCT-12, 12th International Congress on Neutron Capture Therapy, Kagawa, Japan, pp. 1–4.
    Liu, Y.-W.H., Huang, T.T., Jiang, S.H., Liu, H.M., 2004. Renovation of epithermal neutron beam for BNCT at THOR. Appl. Radiat. Isot. 61, 1039.
    Liu, Y.-W.H., Lin, T.Y., 2004. A benchmark of treatment planning system THORplan with SERA. In: Proceedings of the ISNCT-11: 11th World Congress on Neutron Capture Therapy, Boston, USA.
    Omura, M., Miyake, Y., Hasegawa, T., Ueki, K., Sato, O., Haghighat, A., Sjoden, G.E., 2005. Performance of the improved version of Monte Carlo code A3MCNP for large-scale shielding problems. Radiat. Prot. Dosim. 116, 493-497.
    Parks, C.V., Broadhead, B.L., Roussin, R.W., Gauthey, J.C., Cramer, S.N., Kirk, B.L., 1987. Intercomparison of cross-section libraries used for spent fuel cask shielding analyses. Vol. 2, 559-569. In: Proceeding of Theory and Practices in Radiation Protection and Shielding, Knoxville, Tennessee, USA.
    Rhoades, W.A., 1978. The GIP Program for Preparation of Grouporganized Cross-section Libraries. Informal Notes PSR-229. Radiation Safety Information Computational Center, Oak Ridge, TN.
    Rhoades, W.A., Simpson, D.B., 1997. The TORT three-dimensional discrete ordinates neutron/photon transport code, ORNL/TM-13221, Oak Ridge National Laboratory, Oak Ridge, TN.
    Shedlock, D., Haghighat, A., 2005. Neutron analysis of spent fuel storage installation using parallel computing and Monte Carlo techniques. Radiat. Prot. Dosim. 116, 662-666.
    Sheu, R.J., Chen, A.Y., Liu, Y.-W.H., Jiang, S.H., 2008. Shielding calculations for a spent fuel storage cask: a comparison of discrete ordinate, Monte Carlo, and hybrid methods. Nucl. Sci. Eng. 159, 23.
    Spanier, J., Gelbard, E.M., 1969. Monte Carlo Principles and Neutron Transport Problems. Addison-Wesley, Reading, MA.
    Tang, J.S., Emmett, M.B., 2006. SAS4: a Monte Carlo cask shielding analysis module using an automated biasing procedure. ORNL/TM-2005/39,Version 5.1, Vol. I, Book 3, Sect. S4, Oak Ridge National Laboratory, Oak Ridge, TN.
    Tang, J.S., Hoffman, T.J., 1988. Monte Carlo shielding analyses using an automated biasing procedure. Nucl. Sci. Eng. 99, 329-342.
    U.S.NRC, 1997. Standard Review Plan for Dry Cask Storage Systems. NUREG-1536, Nuclear Regulatory Commission.
    U.S.NRC, 2000. Standard Review Plan for Spent Fuel Dry Storage Facilities. NUREG-1567, Nuclear Regulatory Commission.
    Wagner, J.C., Haghighat, A., 1998. Automated Variance Reduction of Monte Carlo Shielding Calculations Using the Discrete Ordinates Adjoint Function. Nucl. Sci. Eng.,128,186.
    Wagner, J.C., Haghighat, A., 2000. A3MCNP: Automatic Adjoint Accelerated MCNP User’s Manual.
    Wagner, J.C. Blakeman, E.D. Peplow, D.E., 2007. Forward-Weighted CADIS Method for Global Variance Reduction. Trans. Amer. Nucl. Soc. 97, 630.
    White, J.E., Ingersoll, D.T., Slater, C.O., Rousin, R.W., 1996. BUGLE-96: Coupled 47 Neutron, 20 Gamma-ray Group Cross-section Library Derived from ENDF/B-VI for LWR Shielding and Pressure Vessel Dosimetry Applications, DLC-185. Radiation Safety Information Computational Center, Oak Ridge, TN, USA.
    許榮鈞, 1993. 中子伴隨遷移計算之研究與應用. 國立清華大學核子工程研究所碩士論文.
    林宗逸, 2004. 清華大學水池式反應器BNCT治療計畫程式THORplan之開發與驗證. 國立清華大學工程與系統科學研究所碩士論文.
    台灣電力公司, 2007. 核一廠用過核子燃料乾式貯存設施安全分析報告.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE