簡易檢索 / 詳目顯示

研究生: 曼妮莎
Date, Manisha-Kondiba
論文名稱: 銅銦硒化物之奈米、微米結構應用於太陽能電池之製備與分析
Fabrication and Analysis of CIS Nano, Micro-structures for solar cell Application
指導教授: 闕郁倫
Chueh, Yu-Lun
口試委員: 沈昌宏
Shen, Chang-Hong
謝東坡
Hsieh, Tung-Po
顏文群
Yen, Wen-Chun
陳學仕
Chen, Hsueh-Shih
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 85
中文關鍵詞: CIS奈米結構微結構太陽能電池週期性結構
外文關鍵詞: CIS, Nanostructure, Microstructure, solar cell, Periodic structure
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • I-III-IV2族半導體(例如CuInSe2、CuInGaSe2)由於其優異的光學吸收特性為目前極具前景的薄膜太陽能電池材料;另一方面由於奈米結構陣列具有獨特的光學吸收特性,已有許多奈米結構製程技術被提出,因此在本論文第一部分我們提出新穎非真空製程技術製作CuInSe2奈米柱陣列並探討其光學特性並應用於太陽能電池,奈米柱陣列以CuInSe2奈米粒子作為前驅物,並藉由機械式刮刀法填入陽極氧化鋁模板內,XRD和Raman光譜顯示CuInSe2奈米柱成功生成於陽極氧化鋁模板內,在陽極氧化鋁模板移除後可得到垂直排列的CuInSe2奈米柱陣列,由TEM分析可看出CuInSe2奈米柱為多晶結構,由UV-Vis光譜分析發現CuInSe2奈米柱具有1.2%反射率低於9.8%的原始反射率,反射率降低可由漸變式的折射率梯度解釋,而由吸收率切線截距測得能隙約1.01 eV與CuInSe2塊材相符,整體而言此機械式刮刀法具有簡單且低成本之製程優勢。第二部分我們利用氮化矽奈米尖錐陣列製作CuInGaSe2奈米反釋迦結構陣列,並研究其光學特性進而製成太陽能電池元件。氮化矽奈米尖錐陣列由ICP-RIE製程製備而得,Mo背電極與CIGS吸收層由濺鍍法製備,CuInGaSe2吸收層厚度調變範圍為0.5-2 µm,隨厚度增加可看出反釋迦結構陣列由獨立分離漸漸轉為彼此互相重疊,藉由XRD光譜可看出CIGS奈米反釋迦結構陣列為黃銅礦結構,UV-vis光譜分析發現CIGS奈米反釋迦結構陣列反射率大幅降低且0.5 µm的元件具有最高的短路電流,目前元件最高效率為0.9%。


    The compounds of I-III-IV2 group elements have attracted much attention in recent years because of their unique electronic and optical properties. CuInSe2 (CIS)-based solar cells, due to the thinner absorber layer about the thickness of 2 µm, is very promising renewable PV. Due to the outstanding optical properties of nanostructures, researchers have developed many techniques to create different nanostructures for solar cell devices,
    In this thesis, we have introduced a novel non-vacuum technique for the fabrication of CuInSe2 NRs and studied its optical properties for applications in solar cell. Further, we have fabricated CuInGaSe2 (CIGS) inverted micro sugar apple (IMSA) array structure, studied its optical properties and fabricated the device structure.
    In the first part, low cost and vacuum free method for fabrication of vertically aligned copper indium diselenide (CuInSe2) nanorod (NR) arrays from pre-synthesized CuInSe2 nanoparticles (NPs) by mechanical approach using porous anodic alumina oxide (AAO) as a template was demonstrated. This approach utilized a rubbing technique to fill CuInSe2 NPs into AAO template. X-ray diffraction and Raman spectroscopy study was employed to confirm the phase of CuInSe2 NPs before and after formation of NRs. Vertically aligned CuInSe2 NR arrays were obtained after removal of AAO template. The polycrystallinity and composition of NR was confirmed by transmission electron microscope. Optical study of CuInSe2 NPs film revealed a reflectance of ~9.8 %, while a significant reduction of the reflectance to ~1.2 % was observed after the formation of CuInSe2 NR arrays. The observed low reflectance behavior is attributed to a concept of gradual refractive index with vertical array structures. Band gap of CuInSe2 NRs was observed to be ~1.01 eV from differential reflectance spectra, which is identical to its bulk value. This template-assisted mechanical approach of vertically aligned NR arrays is simple and inexpensive.

    Table of Contents Chapter 1 Introduction 1 1.1 Need of renewable energy source 1 1.2 Solar energy 3 1.3 Photovoltaics 5 1.4 Solar cells 7 1.4.1 I – V Characteristics 7 1.4.2 Equivalent Circuit of a Solar Cell 8 1.4.3 Output Parameters of a Solar Cell 9 1.4.4 Loss of Efficiency 10 1.5 Types of Solar Cells 11 1.6 Thin Film Photovoltaics 13 1.7 Nanostructures for thin film solar cells 13 1.7.1 Nanostructures at the Front Surface 15 1.7.2 Nanostructures at the Back Surface 15 1.7.3 Nanostructures at the Absorber layer 16 1.7.4 Periodic nanostructure 17 Chapter 2 Literature Review 20 2.1 CuInSe2 structure and solar cells 20 2.2 CIGS solar cell review 23 2.3 CIGS Device Structure 25 2.3.1 Mo Back Contact 25 2.3.2 CIGS Absorber Layer 26 2.3.3 Buffer layer 28 2.3.4 Window layer 29 2.4 Reducing the volume of CIGSe absorber 29 2.5 CIGS Nanostructures for solar cells 31 2.6 Micro structures fabrication 31 Chapter 3 Fabrication of vertically aligned CuInSe2 nanorod arrays structure by template-assisted mechanical approach 33 3.1 Introduction 33 3.2 Experimental Section 35 3.2.1 Preparation of anodic alumina oxide template 35 3.2.2 Synthesis of CuInSe2 NPs via heating-up method 35 3.2.3 Fabrication of CuInSe2 NRs via template-assisted mechanical approach 36 3.2.4 Process of removing AAO template 38 3.2.5 Characterization 39 3.3 Results and Discussion 39 Chapter 4 Large Scale Inverted Micro Sugar Apple Array CuInGaSe2 Solar Cell Using Silicon Nitride-based Nanotip Array as a Template 49 4.1 Introduction 49 4.2 Experimental 51 4.2.1 Preparation of Silicon nitride nanotip array 51 4.2.2 Fabrication of CIGS IMSA arrays 52 4.2.3 Fabrication of CIGS solar cell device 53 4.3 Characterization 54 4.3.1 Characterization of the CIGS inverted miro sugar apple arrays 54 4.3.2 Characterization of the CIGS IMSA array solar cell device 55 4.4 Results and Discussion 56 Chapter 5 Conclusions 67

    References
    1. Framework Convention on Climate Change; United Nations: Paris, 2015.
    2. Climate Change 2014: Mitigation of Climate Change; Intergovernmental Panel on Climate Change: 2014.
    3. Trenberth, K. E.; Fasullo, J. T.; Kiehl, J., Earth's Global Energy Budget. Bulletin of the American Meteorological Society 2009, 90, 311-324.
    4. Bp, Statistical Review of World Energy BP: 2014.
    5. Burger, B. Electricity Production from Solar and Wind in Germany in 2014; 2014.
    6. Kiley, K., Germany Sets New Record, Generating 74 Percent of Power Needs from Renewable Energy. 2014.
    7. German Advisory Council on Global Change. https://www.wbgu.de/en/ (accessed 11th January 2020).
    8. Fthenakis, V. M.; Moskowitz, P. D., Photovoltaics: Environmental, Health and Safety Issues and Perspectives. Progress in Photovoltaics: Research and Applications 2000, 8, 27-38.
    9. M.D., A., Clean Electricity from Photovoltaics; Imperial College Press, 2001.
    10. Wei, S.-H.; Zhang, S. B.; Zunger, A., Effects of Ga Addition to Cuinse2 on Its Electronic, Structural, and Defect Properties. Applied Physics Letters 1998, 72, 3199-3201.
    11. Green, M. A., Solar Cells: Operating Principles, Technology, and System Applications; Prentice-Hall, Inc.,Englewood Cliffs, NJ; None, 1982, p Medium: X; Size: Pages: 288.
    12. Agency, I. E., Solar Energy Perspectives, 2011.
    13. Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D., Solar Cell Efficiency Tables (Version 44). Progress in Photovoltaics: Research and Applications 2014, 22, 701-710.
    14. B. Burger, K. K., C. Kost, S. Nold, S. Philipps, R. Preu, R. Schindler,; T. Schlegl, G. S.-H., G. Willeke, H. Wirth, I. Brucker, A. Häberle,; V. Schacht, a. W. W. Photovoltaics Report; July, 2014.
    15. Shiao, M. J. Thin Film 2012–2016: Technologies, Markets and Strategies for Survival.
    16. Cigs Reaches Efficiency of Poly-Crystalline Panels for the First Time Manz: Reutlingen, 2012.
    17. Battaglia, C., et al., Light Trapping in Solar Cells: Can Periodic Beat Random? ACS Nano 2012, 6, 2790-2797.
    18. Zhu, J.; Hsu, C. M.; Yu, Z.; Fan, S.; Cui, Y., Nanodome Solar Cells with Efficient Light Management and Self-Cleaning. Nano Lett 2010, 10, 1979-84.
    19. Battaglia, C.; Escarré, J.; Söderström, K.; Charrière, M.; Despeisse, M.; Haug, F.-J.; Ballif, C., Nanomoulding of Transparent Zinc Oxide Electrodes for Efficient Light Trapping in Solar Cells. Nature Photonics 2011, 5, 535-538.
    20. Mallick, S. B.; Agrawal, M.; Peumans, P., Optimal Light Trapping in Ultra-Thin Photonic Crystal Crystalline Silicon Solar Cells. Opt. Express 2010, 18, 5691-5706.
    21. Tsui, K.-H.; Lin, Q.; Chou, H.; Zhang, Q.; Fu, H.; Qi, P.; Fan, Z., Low-Cost, Flexible, and Self-Cleaning 3d Nanocone Anti-Reflection Films for High-Efficiency Photovoltaics. Advanced Materials 2014, 26, 2805-2811.
    22. Jeong, S.; McGehee, M. D.; Cui, Y., All-Back-Contact Ultra-Thin Silicon Nanocone Solar Cells with 13.7% Power Conversion Efficiency. Nature Communications 2013, 4, 2950.
    23. Lu, Y.; Lal, A., High-Efficiency Ordered Silicon Nano-Conical-Frustum Array Solar Cells by Self-Powered Parallel Electron Lithography. Nano Letters 2010, 10, 4651-4656.
    24. Tsai, D.-S.; Lin, C.-A.; Lien, W.-C.; Chang, H.-C.; Wang, Y.-L.; He, J.-H., Ultra-High-Responsivity Broadband Detection of Si Metal–Semiconductor–Metal Schottky Photodetectors Improved by Zno Nanorod Arrays. ACS Nano 2011, 5, 7748-7753.
    25. Lin, Q.; Hua, B.; Leung, S.-f.; Duan, X.; Fan, Z., Efficient Light Absorption with Integrated Nanopillar/Nanowell Arrays for Three-Dimensional Thin-Film Photovoltaic Applications. ACS Nano 2013, 7, 2725-2732.
    26. Kapadia, R.; Fan, Z.; Takei, K.; Javey, A., Nanopillar Photovoltaics: Materials, Processes, and Devices. Nano Energy 2012, 1, 132-144.
    27. Leung, S.-F.; Yu, M.; Lin, Q.; Kwon, K.; Ching, K.-L.; Gu, L.; Yu, K.; Fan, Z., Efficient Photon Capturing with Ordered Three-Dimensional Nanowell Arrays. Nano Letters 2012, 12, 3682-3689.
    28. Han, S. E.; Chen, G., Optical Absorption Enhancement in Silicon Nanohole Arrays for Solar Photovoltaics. Nano Letters 2010, 10, 1012-1015.
    29. Mavrokefalos, A.; Han, S. E.; Yerci, S.; Branham, M. S.; Chen, G., Efficient Light Trapping in Inverted Nanopyramid Thin Crystalline Silicon Membranes for Solar Cell Applications. Nano Letters 2012, 12, 2792-2796.
    30. Amalathas, A. P.; Alkaisi, M. M., Periodic Upright Nanopyramid Fabricated by Ultraviolet Curable Nanoimprint Lithography for Thin Film Solar Cells. International Journal of Nanotechnology 2017, 14, 3-14.
    31. Sivasubramaniam, S.; Alkaisi, M. M., Inverted Nanopyramid Texturing for Silicon Solar Cells Using Interference Lithography. Microelectronic Engineering 2014, 119, 146-150.
    32. Yao, Y.; Yao, J.; Narasimhan, V. K.; Ruan, Z.; Xie, C.; Fan, S.; Cui, Y., Broadband Light Management Using Low-Q Whispering Gallery Modes in Spherical Nanoshells. Nature Communications 2012, 3, 664.
    33. Grandidier, J.; Callahan, D. M.; Munday, J. N.; Atwater, H. A., Light Absorption Enhancement in Thin-Film Solar Cells Using Whispering Gallery Modes in Dielectric Nanospheres. Advanced Materials 2011, 23, 1272-1276.
    34. Naughton, M. J., et al., Efficient Nanocoax-Based Solar Cells. physica status solidi (RRL) – Rapid Research Letters 2010, 4, 181-183.
    35. Tseng, P.-C.; Tsai, M.-A.; Yu, P.; Kuo, H.-C., Antireflection and Light Trapping of Subwavelength Surface Structures Formed by Colloidal Lithography on Thin Film Solar Cells. Progress in Photovoltaics: Research and Applications 2012, 20, 135-142.
    36. Haase, C.; Stiebig, H., Optical Properties of Thin-Film Silicon Solar Cells with Grating Couplers. Progress in Photovoltaics: Research and Applications 2006, 14, 629-641.
    37. Eisele, C.; Nebel, C. E.; Stutzmann, M., Periodic Light Coupler Gratings in Amorphous Thin Film Solar Cells. Journal of Applied Physics 2001, 89, 7722-7726.
    38. Wang, K. X.; Yu, Z.; Liu, V.; Cui, Y.; Fan, S., Absorption Enhancement in Ultrathin Crystalline Silicon Solar Cells with Antireflection and Light-Trapping Nanocone Gratings. Nano Letters 2012, 12, 1616-1619.
    39. Garnett, E.; Yang, P., Light Trapping in Silicon Nanowire Solar Cells. Nano Letters 2010, 10, 1082-1087.
    40. Kelzenberg, M. D.; Boettcher, S. W.; Petykiewicz, J. A.; Turner-Evans, D. B.; Putnam, M. C.; Warren, E. L.; Spurgeon, J. M.; Briggs, R. M.; Lewis, N. S.; Atwater, H. A., Enhanced Absorption and Carrier Collection in Si Wire Arrays for Photovoltaic Applications. Nature Materials 2010, 9, 239-244.
    41. Kelzenberg, M. D.; Turner-Evans, D. B.; Kayes, B. M.; Filler, M. A.; Putnam, M. C.; Lewis, N. S.; Atwater, H. A., Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells. Nano Letters 2008, 8, 710-714.
    42. Putnam, M. C.; Turner-Evans, D. B.; Kelzenberg, M. D.; Boettcher, S. W.; Lewis, N. S.; Atwater, H. A., 10 Μm Minority-Carrier Diffusion Lengths in Si Wires Synthesized by Cu-Catalyzed Vapor-Liquid-Solid Growth. Applied Physics Letters 2009, 95, 163116.
    43. Deceglie, M. G.; Ferry, V. E.; Alivisatos, A. P.; Atwater, H. A., Design of Nanostructured Solar Cells Using Coupled Optical and Electrical Modeling. Nano Letters 2012, 12, 2894-2900.
    44. Zhu, J.; Hsu, C.-M.; Yu, Z.; Fan, S.; Cui, Y., Nanodome Solar Cells with Efficient Light Management and Self-Cleaning. Nano Letters 2010, 10, 1979-1984.
    45. Bermel, P.; Luo, C.; Zeng, L.; Kimerling, L. C.; Joannopoulos, J. D., Improving Thin-Film Crystalline Silicon Solar Cell Efficiencies with Photonic Crystals. Opt. Express 2007, 15, 16986-17000.
    46. Wang, K. X.; Yu, Z.; Liu, V.; Raman, A.; Cui, Y.; Fan, S., Light Trapping in Photonic Crystals. Energy & Environmental Science 2014, 7, 2725-2738.
    47. Sheng, P.; Bloch, A. N.; Stepleman, R. S., Wavelength‐Selective Absorption Enhancement in Thin‐Film Solar Cells. Applied Physics Letters 1983, 43, 579-581.
    48. Callahan, D. M.; Munday, J. N.; Atwater, H. A., Solar Cell Light Trapping Beyond the Ray Optic Limit. Nano Letters 2012, 12, 214-218.
    49. Wang, P.; Menon, R., Optimization of Generalized Dielectric Nanostructures for Enhanced Light Trapping in Thin-Film Photovoltaics Via Boosting the Local Density of Optical States. Opt. Express 2014, 22, A99-A110.
    50. Meng, X., et al., Design, Fabrication and Optical Characterization of Photonic Crystal Assisted Thin Film Monocrystalline-Silicon Solar Cells. Opt. Express 2012, 20, A465-A475.
    51. Zhu, J.; Hsu, C.-M.; Yu, Z.-F.; Fan, S.-H.; Cui, Y., Nanodome Solar Cells with Efficient Light Management and Self-Cleaning. Nano Letters 2010, 10, 1979-1984.
    52. Chutinan, A.; Kherani, N. P.; Zukotynski, S., High-Efficiency Photonic Crystal Solar Cell Architecture. Opt. Express 2009, 17, 8871-8878.
    53. Park, Y.; Drouard, E.; Daif, O. E.; Letartre, X.; Viktorovitch, P.; Fave, A.; Kaminski, A.; Lemiti, M.; Seassal, C., Absorption Enhancement Using Photonic Crystals for Silicon Thin Film Solar Cells. Opt. Express 2009, 17, 14312-14321.
    54. Hörig, W.; Neumann, H.; Sobotta, H.; Schumann, B.; Kühn, G., The Optical Properties of Cuinse2 Thin Films. Thin Solid Films 1978, 48, 67-72.
    55. D. S. Albin, J. R. T., G. D. Mooney, J. J. Carapella, A. Duda, A. Mason, and R. Noufi, Proceedings of the IEEE Photovoltaics Specialists Conference 1990.
    56. T. Dullweber, G. H., W. Shams-Kolahi, A. Schwartzlander,M. A. Contreras, R. Noufi, and H. W. Schock, Thin Solid Films 2000, 478, 361–362.
    57. K. Ramanathan, M. A. C., C.L. Perkins, S. Asher, F.S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, and A. Duda, Properties of 19.2% Efficiency Zno/Cds/Cuingase2 Thin Film Solar Cells Prog. Photovolt: Res. Appl. 2003, 11, 225-230.
    58. Prog. Photovolt: Res. Appl. 2002, 10, 41–46.
    59. 16.5% Efficient Cds/Cdte Polycrystalline Thin-Film Solar Cells. Proceedings of the 17th European Photovoltaic Solar Energy Conference 2002, 2, 995–1000.
    60. Lewerenz , H.-J., Jungblut , H., Photovoltaics: Basics and Applications; Springer-Verlag Berlin Heidelberg, 1995.
    61. Kohara, N.; Nishiwaki, S.; Hashimoto, Y.; Negami, T.; Wada, T., Electrical Properties of the Cu(in,Ga)Se2/Mose2/Mo Structure. Solar Energy Materials and Solar Cells 2001, 67, 209-215.
    62. Scofield, J. H.; Duda, A.; Albin, D.; Ballard, B. L.; Predecki, P. K., Sputtered Molybdenum Bilayer Back Contact for Copper Indium Diselenide-Based Polycrystalline Thin-Film Solar Cells. Thin Solid Films 1995, 260, 26-31.
    63. Progress toward 20% Effciency in Cu(in,Ga)Se2 Polycrystalline Thin-Film Solar Cells. Progr. Photovoltaics 1999, 7, 311-316.
    64. Japanese Journal Of Applied Physics 2002, 41, L1209-L1211.
    65. Kaelin, M.; Rudmann, D.; Tiwari, A. N., Low Cost Processing of Cigs Thin Film Solar Cells. Solar Energy 2004, 77, 749-756.
    66. Luque, A.; Hegedus, S., Handbook of Photovoltaic Science and Engineering; John Wiley & Sons, 2003.
    67. Olle, L.; Marika, B.; Jonas, M.; Lars, S., Influence of the Cu(in,Ga)Se2 Thickness and Ga Grading on Solar Cell Performance. Progress in Photovoltaics: Research and Applications 2003, 11, 77-88.
    68. Kannan, R.; Keane, J.; Noufi, R. In Properties of High-Efficiency Cigs Thin-Film Solar Cells, Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005., Lake Buena Vista, FL, USA, USA, 3-7 Jan. 2005; Lake Buena Vista, FL, USA, USA, 2005; pp 195-198.
    69. Delahoy, A. E.; Chen, L.; Sang, B. Uniform, High Efficiency, Hybrid Cigs Process with Application to Novel Device Structures: Annual Technical Report, 15 March 2005 - 14 March 2006; NREL/SR-520-40145; Other: ZXL-5-44205-05; TRN: US200616%%536 United States 10.2172/885337 Other: ZXL-5-44205-05; TRN: US200616%%536 NREL English; National Renewable Energy Lab (NREL), Golden, CO (United States): 06/01, 2006.
    70. Ramanathan, K.; Noufi, R.; To, B.; Young, D. l.; Bhattacharya, R.; Contreras, M. A.; Dhere, R. G.; Teeter, G. In Processing and Properties of Sub-Micron Cigs Solar Cells, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference, Waikoloa, HI, USA, 7-12 May; Waikoloa, HI, USA, 2006; pp 380-383.
    71. Ahn, S.; Kim, K.; Yoon, K., Nanoparticle Derived Cu(in, Ga)Se2 Absorber Layer for Thin Film Solar Cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2008, 313-314, 171-174.
    72. Liu, W.; Mitzi, D.; Chey, J.; Kellock, A., Cuin(Se,S)2 Absorbers Processed Using a Hydrazine-Based Solution Approach. MRS Proceedings 2008, 1123.
    73. Campbell, P.; Wenham, S. R.; Green, M. A. In Light Trapping and Reflection Control with Tilted Pyramids and Grooves, Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference, Las Vegas, NV, USA, USA, 26-30 Sept. 1988; Las Vegas, NV, USA, USA, 1988; pp 713-716 vol.1.
    74. Fan, Z., et al., Three-Dimensional Nanopillar-Array Photovoltaics on Low-Cost and Flexible Substrates. Nature Materials 2009, 8, 648.
    75. Cahen, D.; Gilet, J. M.; Schmitz, C.; Chernyak, L.; Gartsman, K.; Jakubowicz, A., Room-Temperature, Electric-Field Induced Creation of Stable Devices in Culnse2 Crystals. Science 1992, 258, 271-274.
    76. Al-Bassam, A. A. I., Grain Size and Conductivity of Cuin1-Xgaxse Films. Materials Chemistry and Physics 1998, 53, 1-5.
    77. Inguanta, R.; Livreri, P.; Piazza, S.; Sunseri, C., Fabrication and Photoelectrochemical Behavior of Ordered Cigs Nanowire Arrays for Application in Solar Cells. Electrochemical and Solid State Letters 2010, 13, K22-K25.
    78. Guillemoles, J. F.; Rau, U.; Kronik, L.; Schock, H. W.; Cahen, D., Cu(in,Ga)Se-2 Solar Cells: Device Stability Based on Chemical Flexibility. Advanced Materials 1999, 11, 957-+.
    79. Yang, Y.-H.; Chen, Y.-T., Solvothermal Preparation and Spectroscopic Characterization of Copper Indium Diselenide Nanorods. Journal of Physical Chemistry B 2006, 110, 17370-17374.
    80. Guillen, C.; Herrero, J., Structure, Morphology and Photoelectrochemical Activity of Cuinse2 Thin Films as Determined by the Characteristics of Evaporated Metallic Precursors. Solar Energy Materials and Solar Cells 2002, 73, 141-149.
    81. Repins, I.; Contreras, M. A.; Egaas, B.; DeHart, C.; Scharf, J.; Perkins, C. L.; To, B.; Noufi, R., 19.9%-Efficient Zno/Cds/Cuingase2 Solar Cell with 81.2% Fill Factor. Progress in Photovoltaics 2008, 16, 235-239.
    82. Chiang, M.-Y.; Chang, S.-H.; Chen, C.-Y.; Yuan, F.-W.; Tuan, H.-Y., Quaternary Culn(S1-Xsex)(2) Nanocrystals: Facile Heating-up Synthesis, Band Gap Tuning, and Gram-Scale Production. Journal of Physical Chemistry C 2011, 115, 1592-1599.
    83. Zhu, L. Y.; Wang, X. Q.; Ren, Q.; Zhang, G. H.; Xu, D., Morphology and Crystal Structure of Ceo2-Modified Mesoporous Zro2 Powders Prepared by Sol-Gel Method. Materials Chemistry and Physics 2012, 133, 445-451.
    84. Yu, K.; Chen, J., Enhancing Solar Cell Efficiencies through 1-D Nanostructures. Nanoscale Research Letters 2008, 4, 1-10.
    85. Li, X. D.; Zhang, D. W.; Chen, S.; Wang, Z. A.; Sun, Z.; Yin, X. J.; Huang, S. M., Enhancing Efficiency of Dye-Sensitized Solar Cells by Combining Use of Tio2 Nanotubes and Nanoparticles. Materials Chemistry and Physics 2010, 124, 179-183.
    86. Zhang, L.; Liang, J.; Peng, S.; Shi, Y.; Chen, J., Solvothermal Synthesis and Optical Characterization of Chalcopyrite Cuinse2 Microspheres. Materials Chemistry and Physics 2007, 106, 296-300.
    87. Hernandez-Pagan, E. A.; Wang, W.; Mallouk, T. E., Template Electrodeposition of Single-Phase P- and N-Type Copper Indium Diselenide (Cuinse2) Nanowire Arrays. Acs Nano 2011, 5, 3237-3241.
    88. Park, W. I.; Kim, D. H.; Jung, S. W.; Yi, G. C., Metalorganic Vapor-Phase Epitaxial Growth of Vertically Well-Aligned Zno Nanorods. Applied Physics Letters 2002, 80, 4232-4234.
    89. Jiang, Y.; Wu, Y.; Mo, X.; Yu, W.; Xie, Y.; Qian, Y., Elemental Solvothermal Reaction to Produce Ternary Semiconductor Cuine2 (E = S, Se) Nanorods. Inorganic Chemistry 2000, 39, 2964-2965.
    90. Masuda, H.; Yamada, H.; Satoh, M.; Asoh, H.; Nakao, M.; Tamamura, T., Highly Ordered Nanochannel-Array Architecture in Anodic Alumina. Applied Physics Letters 1997, 71, 2770-2772.
    91. Li, F. Y.; Zhang, L.; Metzger, R. M., On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide. Chemistry of Materials 1998, 10, 2470-2480.
    92. Liu, P.; Singh, V. P.; Rajaputra, S.; Phok, S.; Chen, Z., Characteristics of Copper Indium Diselenide Nanowires Embedded in Porous Alumina Templates. Journal of Materials Research 2010, 25, 207-212.
    93. Wu, C.-C.; Shiau, C.-Y.; Ayele, D. W.; Su, W.-N.; Cheng, M.-Y.; Chiu, C.-Y.; Hwang, B.-J., Rapid Microwave-Enhanced Solvothermal Process for Synthesis of Cuinse2 Particles and Its Morphologic Manipulation. Chemistry of Materials 2010, 22, 4185-4190.
    94. Tanino, H.; Maeda, T.; Fujikake, H.; Nakanishi, H.; Endo, S.; Irie, T., Raman-Spectra of Cuinse2. Physical Review B 1992, 45, 13323-13330.
    95. Phaneuf, M. W., Applications of Focused Ion Beam Microscopy to Materials Science Specimens. Micron 1999, 30, 277-288.
    96. Rubanov, S.; Munroe, P. R., Damage in Iii-V Compounds During Focused Ion Beam Milling. Microscopy and Microanalysis 2005, 11, 446-455.
    97. Eberspacher, C.; Fredric, C.; Pauls, K.; Serra, J., Thin-Film Cis Alloy Pv Materials Fabricated Using Non-Vacuum, Particles-Based Techniques. Thin Solid Films 2001, 387, 18-22.
    98. Kaelin, M.; Rudmann, D.; Kurdesau, F.; Meyer, T.; Zogg, H.; Tiwari, A. N., Cis and Cigs Layers from Selenized Nanoparticle Precursors. Thin Solid Films 2003, 431, 58-62.
    99. Guo, Q.; Kim, S. J.; Kar, M.; Shafarman, W. N.; Birkmire, R. W.; Stach, E. A.; Agrawal, R.; Hillhouse, H. W., Development of Cuinse2 Nanocrystal and Nanoring Inks for Low-Cost Solar Cells. Nano Letters 2008, 8, 2982-2987.
    100. Prabahar, S.; Balasubramanian, V.; Suryanarayanan, N.; Muthukumarasamy, N., Optical Properties of Copper Indium Diselenide Thin Films. Chalcogenide Letters 2010, 7, 49-58.
    101. !!! INVALID CITATION !!!
    102. Venkatachalam, M.; Kannan, M. D.; Jayakumar, S.; Balasundaraprabhu, R.; Nandakumar, A. K.; Muthukumarasamy, N., Cuinxga1−Xse2 Thin Films Prepared by Electron Beam Evaporation. Solar Energy Materials and Solar Cells 2008, 92, 571-575.
    103. Gloeckler, M.; Sites, J. R., Band-Gap Grading in Cu(in,Ga)Se2 Solar Cells. Journal of Physics and Chemistry of Solids 2005, 66, 1891-1894.
    104. Repins, I.; Contreras, M. A.; Egaas, B.; DeHart, C.; Scharf, J.; Perkins, C. L.; To, B.; Noufi, R., 19·9%-Efficient Zno/Cds/Cuingase2 Solar Cell with 81·2% Fill Factor. Progress in Photovoltaics: Research and Applications 2008, 16, 235-239.
    105. Sun, D.; Ge, Y.; Zhang, L.; Xu, S.-Z.; Chen, Z.; Wang, N.; Liang, X.-J.; Wei, C.-C.; Zhao, Y.; Zhang, X.-D., Impact of Cu-Rich Growth on the Cu<Sub>2</Sub>Znsnse<Sub>4</Sub> Surface Morphology and Related Solar Cells Behavior. Journal of Semiconductors 2015, 37, 013004-5.
    106. Ferry, V. E.; Sweatlock, L. e. A.; Pacifici, D.; Atwater, H. A., Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells. Nano Letters 2008, 8, 4391-4397.
    107. Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P., Hybrid Nanorod-Polymer Solar Cells. Science 2002, 295, 2425.
    108. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P.-D., Nanowire Dye-Sensitized Solar Cells. Nature Materials 2005, 4, 455.
    109. Tian, B.-Z.; Zheng, X.-L.; Kempa, T. J.; Fang, Y.; Yu, N.-F.; Yu, G.-H.; Huang, J.-L.; Lieber, C. M., Coaxial Silicon Nanowires as Solar Cells and Nanoelectronic Power Sources. Nature 2007, 449, 885.
    110. Hua, B.; Lin, Q.-F.; Zhang, Q.-P.; Fan, Z.-Y., Efficient Photon Management with Nanostructures for Photovoltaics. Nanoscale 2013, 5, 6627-6640.
    111. Shinde, S. S.; Park, S., Oriented Colloidal-Crystal Thin Films of Polystyrene Spheres Via Spin Coating. Journal of Semiconductors 2015, 36, 023001.
    112. Chandramohan, A.; Sibirev, N. V.; Dubrovskii, V. G.; Petty, M. C.; Gallant, A. J.; Zeze, D. A., Model for Large-Area Monolayer Coverage of Polystyrene Nanospheres by Spin Coating. Scientific Reports 2017, 7, 40888.
    113. Shinde, S. S.; Park, S.; Shin, J., Spin Synthesis of Monolayer of Sio2 Thin Films. Journal of Semiconductors 2015, 36, 043002.
    114. Zhang, X. H.; Que, W.-X.; Gao, T. X., Fabrication of Two-Dimensional Close-Packed Monolayer Polystyrene Micro-Spheres Array Master Derived by Spin-Coating Method for Uv Nanoimprint. 2010 8th International Vacuum Electron Sources Conference and Nanocarbon 2010, 479-480.
    115. Xu, C.-M.; Xu, X.-L.; Xu, J.; Yang, X. o.-J.; Zuo, J.; Kong, N.; Huang, W.-H.; Liu, H.-T., Composition Dependence of the Raman A1 Mode and Additional Mode in Tetragonal Cu–in–Se Thin Films. Semiconductor Science and Technology 2004, 19, 1201-1206.
    116. Witte, W.; Kniese, R.; Powalla, M., Raman Investigations of Cu(in,Ga)Se2 Thin Films with Various Copper Contents. Thin Solid Films 2008, 517, 867-869.
    117. Insignares, C.; Alejandro, P.-R.; Victor, I.-R., Raman Scattering Based Strategies for Assessment of Advanced Chalcopyrite Photovoltaic Technologies: Characterization of Electrodeposited Cu(in,Ga)(S,Se)2 Solar Cells. Doctoral thesis, University of Barcelona, Spain 2015.
    118. Lehr, D.; Helgert, M.; Sundermann, M.; Morhard, C.; Pacholski, C.; Spatz, J. P.; Brunner, R., Simulating Different Manufactured Antireflective Sub-Wavelength Structures Considering the Influence of Local Topographic Variations. Opt. Express 2010, 18, 23878-23890.
    119. Diao, Z.; Kraus, M.; Brunner, R.; Dirks, J. H.; Spatz, J. P., Nanostructured Stealth Surfaces for Visible and near-Infrared Light. Nano Letters 2016, 16, 6610-6616.
    120. Karabacak, T., Thin-Film Growth Dynamics with Shadowing and Re-Emission Effects. Journal of Nanophotonics 2011, 5, 052501.

    QR CODE