研究生: |
賴承彥 Lai, Chen-Yen |
---|---|
論文名稱: |
自旋量子位元與自旋環境交互作用的相消干現象--與時間相關的密度矩陣重整化群的研究 Spin Qubit Decoherence by Spin Bath -- a Time-Dependent DMRG Study |
指導教授: |
陳柏中
Chen, Pochung |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 50 |
中文關鍵詞: | 密度矩陣重整化群 、量子資訊 |
外文關鍵詞: | density matrix renormalization group, spin decoherence, two spin decoherence, non-Makovian, quantum information, td dmrg |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
In this thesis, we use the new numerical method – density matrix renormalization group – to study the decoherence of spin qubit. Because of diverging Hilbert space in quantum system, the linear growth and effective truncation make us can simulate quantum system accurately. Also, time-dependent DMRG was developed to simulate the real-time dynamics of quantum system. We use this method to study the non-equilibrium properties.
Spin decoherence induced by a spin bath has recently been the subject of interest in the field of quantum computation and spintronics. Unlike the spin-boson model, the resulting decoherence depends crucially on the nature of the spin bath and its coupling to the central spin. In this work we investigate the decoherence of a central spin which is coupled non-uniformly to a spin chain by means of the time-dependent density matrix renormalization group technique. Using this technique the coupling between the central spin and the spin chain can take any form, in contrast to the typical uniform or on-site coupling taken in the literature. Two qubit decoherence is also an interesting subject in this thesis. The distance between
qubits affect the decoherence of qubits. We have studied the resulting spin
decoherence induced by spin chains in the Ising, XY, XXZ, and Heisenberg universality classes. Connection between the decoherence the quantum phase transition of the spin chain is discussed.
An exotic interaction, which can’t be realized in semiconductor wire, exist in a system : double wire loaded by fermionic polar molecules. Different interaction can be tuned by external electric field. We study the phase diagram of this system by means of static DMRG. An interesting phase – spontaneous interwire coherence -- is found.
In this thesis, we use the new numerical method – density matrix renormalization group – to study the decoherence of spin qubit. Because of diverging Hilbert space in quantum system, the linear growth and effective truncation make us can simulate quantum system accurately. Also, time-dependent DMRG was developed to simulate the real-time dynamics of quantum system. We use this method to study the non-equilibrium properties.
Spin decoherence induced by a spin bath has recently been the subject of interest in the field of quantum computation and spintronics. Unlike the spin-boson model, the resulting decoherence depends crucially on the nature of the spin bath and its coupling to the central spin. In this work we investigate the decoherence of a central spin which is coupled non-uniformly to a spin chain by means of the time-dependent density matrix renormalization group technique. Using this technique the coupling between the central spin and the spin chain can take any form, in contrast to the typical uniform or on-site coupling taken in the literature. Two qubit decoherence is also an interesting subject in this thesis. The distance between
qubits affect the decoherence of qubits. We have studied the resulting spin
decoherence induced by spin chains in the Ising, XY, XXZ, and Heisenberg universality classes. Connection between the decoherence the quantum phase transition of the spin chain is discussed.
An exotic interaction, which can’t be realized in semiconductor wire, exist in a system : double wire loaded by fermionic polar molecules. Different interaction can be tuned by external electric field. We study the phase diagram of this system by means of static DMRG. An interesting phase – spontaneous interwire coherence -- is found.
[1] K. G. Wilson, Rev. Mod. Phys. 77. 259 (2005).
[2] Steven R. White, Phys. Rev. B, 48, 10345 (1993).
[3] Steven R. White, Phys. Rev. Lett. 77. 3633 (1996).
[4] S. Ostlund and S. Rommer, Phys. Rev. Lett. 75, 3537 (1995).
[5] R. M. Noack and S. R. White. In I. Peschel, X. Wang, M. Kaulke,
and K. Hallberg (Editors), Density Matrix Renormalization: A New
Numerical Method in Physics. p.27 (Springer, 1999).
[6] Michael A. Nielsen and Isaac L. Chuang, Quantum Computation and
Quantum Information. (Cambridge, 2000)
[7] U. Schollw‥ock, Rev. Mod. Phys. 77, 259 (2005).
[8] E. Schmidt, Math. Ann. 63, 433 (1906); A. Kkert and P. L. Knight,
Am. J. Phys. 63, 415 (1995); A. Peres, Quantum Theory: Concepts
and Mathods (Kluwer Academic Publishers, Dordrecht, 1995).
[9] G. Vidal, J. I. Latorre, E. Rico and A. Kitaev, Phys. Rev. Lett. 90
227902 (2003); J. I. Latorre, E. Rico, G. Vidal quant-ph/0304098.
[10] S. R. White and D. Scalapino, Phys. Rev. B 55 14701 (1997).
[11] S. R. White and D. Scalapino, Phys. Rev. B 55 6504 (1997).
[12] S. R. White and D. Scalapino, Phys. Rev. B 57 3301 (1998).
[13] S. R. White and D. Scalapino, Phys. Rev. Lett. 80 1272 (1998); ibid.
Phys. Rev. B 61 6320 (2000).
[14] S. R. White and I. Affleck, Phys. Rev. B 64 024411 (2001).
[15] M. A. Cazallila and J. B. Marston, Phys. Rev. Lett. 88 256403 (2002).
[16] G. Vidal, Phys. Rev. Lett., 91, 147902 (2003) and Phys. Rev. Lett.,
93, 040502 (2004).
[17] Steven R. White and Adrian E. Feiguin, Phys. Rev. Lett., 93,
076401(2004), also A. J. Dalet etc al., J. Stat. Mech. 04 005 (2004).
[18] Adrian E. Feiguin and Steven R. White, Phys. Rev. B 72, 020404(R)
(2005).
[19] Peter Schmitteckert, Phys. Rev. B 70 121302 (2004).
[20] K. A. Al-Hassanieh, A. E. Feiguin, J. A. Riera, C. A. B‥usser, and E.
Dagotto, Phys. Rev. B 73, 195304 (2006).
[21] Andreas Friedrich, Time-dependent Properties of one-dimensioal Spin-
Systems: a DMRG-Study, Ph.D thesis.
[22] Christian Dziurzik, Competition of magnetic and superconducting ordering
in one-dimensional generalized Hubbard models, Ph.D thesis.
[23] D. D. Awschalom, D. Loss, and N. Samarth, Semiconductor Spintronics
and Quantum Computation (Springer, Berlin, 2002).
[24] R. Fazio, Focus on Solid State Quantum Information, New J. of
Physics 7 (2005).
[25] W. H. Zurek, Phys. Rev. D 26, 1862 (1982).
[26] F. M. Cucchietti, J. P. Paz, and W. H. Zurek, Phys. Rev. A 72, 052113
(2005).
[27] S. paganelli, F. de Pasquale, amd S. M. Giampaolo, Phys. Rev. A 66,
052317 (2002).
[28] H. T. Quan, Z. Song, X. F. Liu, P. Zanardi, and C. P. Sun, Phys. Rev.
Lett. 96. 140604 (2006).
[29] Y. Y. Tian, Pochoung Chen, D. W. Wang, unpublished.
[30] A. Peres, Phys. Rev. A 30, 1610 (1984).
[31] Davide Rossini, Tommaso Calarco, Vittorio Giovannetti, Simone Montangero,
and Rosario Fazio, Phys. Rev. A 75, 032333 (2007).
[32] Sebastian Eggert and Ian Affleck, Phys. Rev. B, 46, 10866 (1992).
[33] A. Furusaki and T. Hikihara, Phys. Rev. B, 58, 5529 (1998).
[34] Wei-Chao Shen and Chung-Yu Mou, unpublished.
[35] Chi-Ming Chang, Daw-Wei Wang, unpublished.