簡易檢索 / 詳目顯示

研究生: 賴承彥
Lai, Chen-Yen
論文名稱: 自旋量子位元與自旋環境交互作用的相消干現象--與時間相關的密度矩陣重整化群的研究
Spin Qubit Decoherence by Spin Bath -- a Time-Dependent DMRG Study
指導教授: 陳柏中
Chen, Pochung
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 50
中文關鍵詞: 密度矩陣重整化群量子資訊
外文關鍵詞: density matrix renormalization group, spin decoherence, two spin decoherence, non-Makovian, quantum information, td dmrg
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this thesis, we use the new numerical method – density matrix renormalization group – to study the decoherence of spin qubit. Because of diverging Hilbert space in quantum system, the linear growth and effective truncation make us can simulate quantum system accurately. Also, time-dependent DMRG was developed to simulate the real-time dynamics of quantum system. We use this method to study the non-equilibrium properties.
    Spin decoherence induced by a spin bath has recently been the subject of interest in the field of quantum computation and spintronics. Unlike the spin-boson model, the resulting decoherence depends crucially on the nature of the spin bath and its coupling to the central spin. In this work we investigate the decoherence of a central spin which is coupled non-uniformly to a spin chain by means of the time-dependent density matrix renormalization group technique. Using this technique the coupling between the central spin and the spin chain can take any form, in contrast to the typical uniform or on-site coupling taken in the literature. Two qubit decoherence is also an interesting subject in this thesis. The distance between
    qubits affect the decoherence of qubits. We have studied the resulting spin
    decoherence induced by spin chains in the Ising, XY, XXZ, and Heisenberg universality classes. Connection between the decoherence the quantum phase transition of the spin chain is discussed.
    An exotic interaction, which can’t be realized in semiconductor wire, exist in a system : double wire loaded by fermionic polar molecules. Different interaction can be tuned by external electric field. We study the phase diagram of this system by means of static DMRG. An interesting phase – spontaneous interwire coherence -- is found.


    In this thesis, we use the new numerical method – density matrix renormalization group – to study the decoherence of spin qubit. Because of diverging Hilbert space in quantum system, the linear growth and effective truncation make us can simulate quantum system accurately. Also, time-dependent DMRG was developed to simulate the real-time dynamics of quantum system. We use this method to study the non-equilibrium properties.
    Spin decoherence induced by a spin bath has recently been the subject of interest in the field of quantum computation and spintronics. Unlike the spin-boson model, the resulting decoherence depends crucially on the nature of the spin bath and its coupling to the central spin. In this work we investigate the decoherence of a central spin which is coupled non-uniformly to a spin chain by means of the time-dependent density matrix renormalization group technique. Using this technique the coupling between the central spin and the spin chain can take any form, in contrast to the typical uniform or on-site coupling taken in the literature. Two qubit decoherence is also an interesting subject in this thesis. The distance between
    qubits affect the decoherence of qubits. We have studied the resulting spin
    decoherence induced by spin chains in the Ising, XY, XXZ, and Heisenberg universality classes. Connection between the decoherence the quantum phase transition of the spin chain is discussed.
    An exotic interaction, which can’t be realized in semiconductor wire, exist in a system : double wire loaded by fermionic polar molecules. Different interaction can be tuned by external electric field. We study the phase diagram of this system by means of static DMRG. An interesting phase – spontaneous interwire coherence -- is found.

    1 Introduction 3 2 Density Matrix Renormalization Group 5 2.1 Numerical Renormalizaion Group and Density Matrix Formulation . 5 2.1.1 Standard DMRG Procedure . . . . . . . . . . . . . . . . . . 7 2.1.2 Physical Quantity Calculation in DMRG . . . . . . . . . . . 11 2.1.3 Wave Function Transformation . . . . . . . . . . . . . . . . 14 2.2 Time-Dependent DMRG . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.1 Suzuki-Trotter Formula . . . . . . . . . . . . . . . . . . . . . 17 3 Spin Qubit(s) Decoherence by Generalized Spin Bath 20 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3 DMRG Procedure in Spin qubit(s) Dynamics . . . . . . . . . . . . . 22 3.4 Single Spin Decoherence . . . . . . . . . . . . . . . . . . . . . . . . 23 3.4.1 Short Time Behavior of Loschmidt echo . . . . . . . . . . . 23 3.4.2 Spin Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.5 Two Spins Decoherence . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.5.1 Known Result in XY-bath . . . . . . . . . . . . . . . . . . . 34 3.5.2 Generalized Heisenberg Spin Bath . . . . . . . . . . . . . . . 36 4 Quantum Phase Diagram of Polar Molecules in 1D Double Wire System 38 4.1 The Model and Transformation . . . . . . . . . . . . . . . . . . . . 38 4.2 Phase Diagram and Order Parameter . . . . . . . . . . . . . . . . . 40 5 Conclusion 43 5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 A Second Order Approximation of Loschmidt Echo 46

    [1] K. G. Wilson, Rev. Mod. Phys. 77. 259 (2005).
    [2] Steven R. White, Phys. Rev. B, 48, 10345 (1993).
    [3] Steven R. White, Phys. Rev. Lett. 77. 3633 (1996).
    [4] S. Ostlund and S. Rommer, Phys. Rev. Lett. 75, 3537 (1995).
    [5] R. M. Noack and S. R. White. In I. Peschel, X. Wang, M. Kaulke,
    and K. Hallberg (Editors), Density Matrix Renormalization: A New
    Numerical Method in Physics. p.27 (Springer, 1999).
    [6] Michael A. Nielsen and Isaac L. Chuang, Quantum Computation and
    Quantum Information. (Cambridge, 2000)
    [7] U. Schollw‥ock, Rev. Mod. Phys. 77, 259 (2005).
    [8] E. Schmidt, Math. Ann. 63, 433 (1906); A. Kkert and P. L. Knight,
    Am. J. Phys. 63, 415 (1995); A. Peres, Quantum Theory: Concepts
    and Mathods (Kluwer Academic Publishers, Dordrecht, 1995).
    [9] G. Vidal, J. I. Latorre, E. Rico and A. Kitaev, Phys. Rev. Lett. 90
    227902 (2003); J. I. Latorre, E. Rico, G. Vidal quant-ph/0304098.
    [10] S. R. White and D. Scalapino, Phys. Rev. B 55 14701 (1997).
    [11] S. R. White and D. Scalapino, Phys. Rev. B 55 6504 (1997).
    [12] S. R. White and D. Scalapino, Phys. Rev. B 57 3301 (1998).
    [13] S. R. White and D. Scalapino, Phys. Rev. Lett. 80 1272 (1998); ibid.
    Phys. Rev. B 61 6320 (2000).
    [14] S. R. White and I. Affleck, Phys. Rev. B 64 024411 (2001).
    [15] M. A. Cazallila and J. B. Marston, Phys. Rev. Lett. 88 256403 (2002).
    [16] G. Vidal, Phys. Rev. Lett., 91, 147902 (2003) and Phys. Rev. Lett.,
    93, 040502 (2004).
    [17] Steven R. White and Adrian E. Feiguin, Phys. Rev. Lett., 93,
    076401(2004), also A. J. Dalet etc al., J. Stat. Mech. 04 005 (2004).
    [18] Adrian E. Feiguin and Steven R. White, Phys. Rev. B 72, 020404(R)
    (2005).
    [19] Peter Schmitteckert, Phys. Rev. B 70 121302 (2004).
    [20] K. A. Al-Hassanieh, A. E. Feiguin, J. A. Riera, C. A. B‥usser, and E.
    Dagotto, Phys. Rev. B 73, 195304 (2006).
    [21] Andreas Friedrich, Time-dependent Properties of one-dimensioal Spin-
    Systems: a DMRG-Study, Ph.D thesis.
    [22] Christian Dziurzik, Competition of magnetic and superconducting ordering
    in one-dimensional generalized Hubbard models, Ph.D thesis.
    [23] D. D. Awschalom, D. Loss, and N. Samarth, Semiconductor Spintronics
    and Quantum Computation (Springer, Berlin, 2002).
    [24] R. Fazio, Focus on Solid State Quantum Information, New J. of
    Physics 7 (2005).
    [25] W. H. Zurek, Phys. Rev. D 26, 1862 (1982).
    [26] F. M. Cucchietti, J. P. Paz, and W. H. Zurek, Phys. Rev. A 72, 052113
    (2005).
    [27] S. paganelli, F. de Pasquale, amd S. M. Giampaolo, Phys. Rev. A 66,
    052317 (2002).
    [28] H. T. Quan, Z. Song, X. F. Liu, P. Zanardi, and C. P. Sun, Phys. Rev.
    Lett. 96. 140604 (2006).
    [29] Y. Y. Tian, Pochoung Chen, D. W. Wang, unpublished.
    [30] A. Peres, Phys. Rev. A 30, 1610 (1984).
    [31] Davide Rossini, Tommaso Calarco, Vittorio Giovannetti, Simone Montangero,
    and Rosario Fazio, Phys. Rev. A 75, 032333 (2007).
    [32] Sebastian Eggert and Ian Affleck, Phys. Rev. B, 46, 10866 (1992).
    [33] A. Furusaki and T. Hikihara, Phys. Rev. B, 58, 5529 (1998).
    [34] Wei-Chao Shen and Chung-Yu Mou, unpublished.
    [35] Chi-Ming Chang, Daw-Wei Wang, unpublished.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE