簡易檢索 / 詳目顯示

研究生: 楊杰穎
Yang, Jie-Ying
論文名稱: 應用深度學習之蘭花品質分級自動化辨識系統
Automatic Recognition System of Quality Classification for Orchid Based on Deep Learning
指導教授: 陳榮順
Chen, Rong-Shun
口試委員: 白明憲
Bai, Ming-Sian
黃雉存
Huang, Chih-Tsun
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 85
中文關鍵詞: 深度學習缺陷辨識系統卷積神經網路物件偵測蘭花分等系統圖形使用者介面
外文關鍵詞: Deep Learning, Defect recognition system, Convolutional neural network, Object detection, Orchid classification systems, Graphical User Interface
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了解決當前台灣從事農業人口短缺之問題,本研究開發一套蘭花開花株品質分級自動化辨識系統。首先建立葉片損傷、花朵顏色及花苞、花朵各種損傷之數千張影像資料庫,藉由深度學習中不同的物件偵測模型訓練,辨識蘭花開花株之不同等級並分類。在利用影像資料庫訓練完後,此辨識系統可以藉由攝影機取像,並比對瑕疵之特徵,即時分辨蘭花開花株是否於葉片及花朵上有瑕疵,進一步對於切花及盆花的花朵和花苞進行品質分級。本研究所使用之深度學習影像訓練集皆於合作蘭花種植園區實地拍攝的影像,藉由所開發之自動化分流機構,整合影像辨識成果,可達成蘭花開花株品質分級自動化辨識之目的,符合產業上的需求。
    本研究開發一套圖形使用者介面,將訓練完畢的深度學習物間偵測演算法與PyQt5進行結合,設計可以即時監控影像辨識之結果,並將重要的資訊顯示在訊息欄,此介面可以讓使用者方便觀看影像辨識成果,對於產業實際應用上有更好的使用效果。


    In order to solve the shortage of agricultural workers in Taiwan nowadays, this research aims to develop an automatic visual recognition system for the quality classification of orchid, planted in a greenhouse. In the system, thousands of image databases, including leaf damage, flower color & bud, and flower defect, have been established to identify the defects of orchids and to classify different grades of orchid by training different deep learning object detection algorithms. After training the databases, use the built camera in this recognition system to take pictures, which then be used to compare the features of image to instantly identify the orchid defect on the leaves and flowers, or to classify the quality classification of cut flowers and potted by flowers and buds. In this research all pictures used for the training of deep learning were photographed in the cooperative orchid garden. As a result, the system is reliable when is used in any orchid plant company. To meet the needs of the industry, a simple prototype of an automated shunting mechanism has been made to prove the feasible of the automatic identification of the quality classification for orchid. Integrating the results of image recognition, it can deliver the single item of orchid to the assigned destination.
    Combining the trained deep learning object detection algorithms with PyQt5, a graphical user interface is designed for the friendly use of real-time monitoring of image recognition and for displaying the important information in the message bar.

    摘要 I Abstract II 致謝 IV 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1前言 1 1.2 研究背景與動機 2 1.3 文獻回顧 3 1.3.1卷積神經網路 3 1.3.2物件偵測演算法 6 1.3.3蘭花及植物疾病檢測相關文獻 11 1.4 論文架構 15 第二章 系統概述 17 2.1 視覺辨識系統 17 2.1.1硬體設備及軟體開發套件 17 2.1.2使用者介面設計 20 2.2深度學習運算平台 22 2.2.1硬體設備與作業系統 22 2.2.2軟體開發套件 25 2.3 自動化分流機構 29 2.3.1硬體設備 29 2.4 蘭花開花株分等依據 33 2.4.1蘭花開花株瑕疵 34 2.4.2切花分等依據 37 2.4.3盆花分等依據 38 2.5 蘭花自動化分等流程 41 2.5.1視覺辨識站 43 2.5.2分流機構 44 第三章 系統實現 45 3.1蘭花開花株影像資料集 45 3.1.1影像拍攝站 45 3.1.2標記蘭花開花株影像 46 3.2影像辨識系統 47 3.2.1卷積神經網路 47 3.2.2優化模型訓練效果 47 3.2.3物件偵測演算法 49 3.2.4本系統深度學習模型架構 50 第四章 研究方法與實驗結果 51 4.1蘭花開花株資料集 51 4.1.1蘭花開花株花朵及花苞資料集 51 4.1.2蘭花開花株瑕疵資料集 52 4.1.3蘭花開花株裂葉資料集 53 4.2影像辨識成果 54 4.2.1物件偵測辨識成果性能指標 54 4.2.2各物件偵測辨識成果 57 4.3蘭花自動化分等流程系統 70 4.3.1演算法實際應用情形 70 4.3.2自動化分流系統 74 第五章 結論與未來工作 79 5.1 結論 79 5.2 未來工作 80 參考文獻 82

    [1] https://www.thenewslens.com/article/126192, February, 2020.
    [2] https://statview.coa.gov.tw/aqsys_on/importantArgiGoal_lv3_1_ 6_3_1.html, February, 2020.
    [3] https://agrstat.coa.gov.tw/sdweb/public/trade/tradereport.aspx, February, 2020.
    [4] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.
    [5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," Neural Information Processing Systems Conference, pp. 1097-1105, Les Vegas, USA, December 3-8, 2012.
    [6] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," Proc. Int. Conf. Learn. Represent., pp. 1-14, 2015.
    [7] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," The IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778, Las Vegas, USA, June 26 - July 1, 2016.
    [8] R. K. Srivastava, K. Greff, and J. J. a. p. a. Schmidhuber, "Highway networks," Machine Learning, May 3, 2015.(https://arvix.org/1505.00387.pdf)
    [9] R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation," The IEEE Conference on Computer Vision and Pattern Recognition, pp. 580-587, Columbus, USA, June 24-27, 2014.
    [10] R. Girshick, "Fast r-cnn," The IEEE International Conference on Computer Vision, pp. 1440-1448, Santiago, Chile, 2015.
    [11] S. Ren, K. He, R. Girshick, and J. Sun, "Faster r-cnn: Towards real-time object detection with region proposal networks," Neural Information Processing Systems Conference, pp. 91-99, Montreal, Canada, December 7-12, 2015.
    [12] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You only look once: Unified, real-time object detection," The IEEE Conference on Computer Vision and Pattern Recognition, pp. 779-788, Les Vegas, USA, June 26 - July 1, 2016.
    [13] J. Redmon and A. Farhadi, "YOLO9000: better, faster, stronger," The IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263-7271 , Honolulu, Hawaii, July 22-25,2017.
    [14] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,” CoRR, April, 2018. (https://arxiv.org/pdf/1804.02767.pdf)
    [15] Z. Cai and N. Vasconcelos, "Cascade r-cnn: Delving into high quality object detection," The IEEE Conference on Computer Vision and Pattern Recognition, pp. 6154-6162, Utah, USA, June 19-21, 2018.
    [16] M. T. bin MohamadAzmi and N. M. Isa, "Orchid disease detection using image processing and fuzzy logic," International Conference on Electrical, Electronics and System Engineering, pp. 37-42, Kuala Lumpur, Malaysia, December 4-5, 2013.
    [17] W. M. N. Wan Mohd Fadzil, M. S. B. S. Rizam, R. Jailani, and M. T. Nooritawati, "Orchid leaf disease detection using border segmentation techniques," IEEE Conference on Systems, Process and Control (ICSPC 2014), pp. 168-173, Kuala Lumpur, Malaysia, December 12-14, 2014.
    [18] A. Fuentes, S. Yoon, S. C. Kim, and D. S. Park, "A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition," Sensors, vol. 17, no. 9, p. 2022, 2017.
    [19] 林采蓉, "基於深度學習之自動化蘭花苗株病變視覺辨識系統",國立清華大學動力機械工程學系碩士論文,民國108年7月。
    [20] https://www.logitech.com/zh-tw/product/c922-pro-stream-webcam?crid=34, February, 2020.
    [21] https://medium.com/@yehjames/%E8%B3%87%E6%96%99%E 5%88%86%E6%9E%90-%E6%A9%9F%E5%99%A8%E5%AD%B8%E7%BF%92-%E7%AC%AC%E4%B8%80%E8%AC%9B-python%E6%87%B6%E4%BA%BA%E5%8C%85-anaconda-%E4%BB%8B%E7%B4%B9-%E5%AE%89%E8%A3%9D-f8199fd4be8c, February, 2020.
    [22] G. Bradski and A. Kaehler, Learning OpenCV, O'Reilly Media, Inc., 2008.
    [23] https://pypi.org/project/PyQt5/, February, 2020.
    [24] https://blog.csdn.net/rosefun96/article/details/79442814, February, 2020.
    [25] https://en.wikipedia.org/wiki/AlphaGo, February, 2020.
    [26] https://www.gigabyte.com/tw/Graphics-Card/GV-N208TTURBO-11GC-rev-10#kf, February, 2020.
    [27] https://www.leadtek.com/cht/products/AI_HPC(37)/NVIDIA_Jets on_TX2(10782)/detail, February, 2020.
    [28] http://tensorflowkeras.blogspot.com/2017/08/keras.html, February, 2020.
    [29] https://www.itread01.com/content/1542587896.html, February, 2020.
    [30] https://www.tensorflow.org/guide/graphs, February, 2020.
    [31] https://blog.csdn.net/bestrivern/article/details/89433023, February, 2020.
    [32] https://github.com/tzutalin/labelImg, February, 2020.
    [33] https://store.arduino.cc/usa/mega-2560-r3, February, 2020.
    [34] https://goods.ruten.com.tw/item/show?21911302950070#info, July, 2019.
    [35] https://www.hcmat.tw.bysources.com/?fbclid=IwAR1VXh_sWFR OoLvAqOchGUvR8wk9VXUVzD6vIzX5hq4YGVUNg4yhb5hydHw, December, 2018.
    [36] https://global.sharp/products/device/lineup/data/pdf/datasheet/g p2y0a21yk_e.pdf, February, 2020.
    [37] 皇基股份有限公司內部資料,2020。
    [38] L. Y. Pratt, "Discriminability-based transfer between neural networks," Neural Information Processing Systems Conference, pp. 204-211, Denver, USA, 1993.
    [39] https://chtseng.wordpress.com/2017/11/11/data-augmentation-%E8%B3%87%E6%96%99%E5%A2%9E%E5%BC%B7/, July, 2018.
    [40] https://medium.com/@chih.sheng.huang821/%E6%B7%B1%E5 %BA%A6%E5%AD%B8%E7%BF%92%E7%B3%BB%E5%88%97-%E4%BB%80%E9%BA%BC%E6%98%AFap-map-aaf089920848, February, 2020.
    [41] https://github.com/open-mmlab/mmdetection/blob/master/docs/MODEL_ZOO.md, February, 2020.

    無法下載圖示 全文公開日期 2025/03/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE