簡易檢索 / 詳目顯示

研究生: 朱映瑞
Chu, Inn-Ray
論文名稱: 以去氧羥四環素調控神經幹細胞對惡性C6神經膠 腫瘤細胞進行分化及自殺基因的複合療法
A Doxycycline-Inducible Neural Stem Cell-Based Combination of Differentiation and Suicide Gene Therapy for Tumorigenic C6 Glioma Cells
指導教授: 潘榮隆
Pan, Rong-Long
吳立真
Wu, Li-Chen
楊重熙
Yang, Chung-Shi
口試委員: 張壯榮
Chang, Chuang Rung
曾淑芬
Tzeng, Shun-Fen
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 103
中文關鍵詞: 癌幹細胞分化療法介白素-6膠質纖維酸性蛋白游離介白素-6 受體腫瘤壞 死因子-α神經幹細胞自殺基因療法連接蛋白-43
外文關鍵詞: cancer stem cell, differentiation therapy, interleukin-6, glial fibrillary acidic protein, soluble interleukin-6 receptor, tumor necrosis factor-α, neural stem cell, suicide gene therapy, connexin-43
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 癌幹細胞由於具有治療抗性,且可造成腫瘤的發生、復發和轉移,因而被認為是癌症治療上的一個障礙。分化療法是運用來治療癌幹細胞的其中一種方式,可藉由誘導癌幹細胞進入分化的程序以降低其致瘤性。介白素-6被發現可提高膠質纖維酸性蛋白在C6神經膠腫瘤細胞的表現量,這說明了介白素-6可誘導此細胞分化的可能性。此外,C6神經膠腫瘤細胞株被證實含有高比例的癌幹細胞,這些觀察促使我們假設介白素-6可引發惡性C6神經膠腫瘤細胞分化。然而當我們以介白素-6處理此細胞時,發現並無法有效地誘導其進行分化。因此,不同強度的介白素-6訊息傳遞誘發物被運用來檢視其誘導分化的效果,包括介白素-6、介白素-6/游離介白素-6受體和腫瘤壞死因子-α/介白素-6/游離介白素-6受體。實驗的結果顯示較強的介白素-6訊息傳遞誘發物可有效地誘導惡性C6神經膠腫瘤細胞分化。近年來利用神經幹細胞的癌細胞趨性來進行基因療法,已成治療腦癌的一個有效手段。但此一策略面臨到兩個重要的挑戰,即是要避免神經幹細胞在到達腫瘤病灶處前被本身所攜帶之治療基因的產物所影響,以及清除治療後所遺留下來的外源性神經幹細胞。為此,我們建立的一個可被去氧羥四環素誘導的逆病毒質體pTRE3G-sIL6R-TNFα- IL6-IRES-TKGFP,讓攜帶有此質體或是轉導由此質體製造出的逆病毒之幹細胞,進行分化療法搭配自殺基因療法的複合式治療。腫瘤壞死因子-α/介白素-6/游離介白素-6受體可有效地誘導惡性C6神經膠腫瘤細胞進行分化,降低其細胞的增生速度和致瘤性,並增加細胞分化指標的表現,例如連接蛋白-43。間隙連接被證實可增強自殺基因療法的旁觀者效應。實驗結果顯示,運用攜帶有逆病毒質體之神經幹細胞進行分化療法搭配自殺基因療法來處理惡性C6神經膠腫瘤細胞的效果比起只使用自殺基因療法的好。此篇研究為利用神經幹細胞進行分化療法搭配TK/GCV自殺基因系統治療神經膠腫瘤細胞的首例。


    Cancer stem cells (CSCs) are obstacles to cancer therapy due to their therapeutic resistance, ability to initiate neoplasia, and roles in tumor relapse and metastasis. Efforts have been made to cure CSCs, such as the use of differentiation therapy, which induces cancer stem-like cells to undergo differentiation and decrease their tumorigenicity. Interleukin 6 (IL-6) upregulates the expression of glial fibrillary acidic protein (GFAP) in C6 glioma cells, indicating that it is able to induce the differentiation of these cells. The C6 glioma cell line forms a high percentage of cancer stem-like cells, leading us to speculate whether IL-6 signaling could modulate the differentiation of tumorigenic C6 glioma cells. However, we observed that IL-6 alone could not efficiently induce the differentiation of these cells. Therefore, different IL-6 signaling elicitors, including IL-6 alone, a combination of IL-6 and soluble IL-6 receptor (IL-6/sIL-6R), and tumor necrosis factor-α (TNF-α) plus IL-6/sIL-6R (TNF-α/IL-6/sIL-6R) were evaluated for their potential use in differentiation therapy. Our results indicated that enhanced IL-6 signaling could effectively induce tumorigenic C6 glioma cell differentiation. Neural stem cell (NSC)-based gene therapies have been recently developed as effective strategies for treating brain tumors through inherent tumor tropism. However, there are two considerable challenges for this methodology: preventing NSCs from dying from the therapeutic agents encoded by their equipped genes before reaching tumor sites and the clearance of exogenous NSCs after therapeutic treatments. For these purposes, we established a novel doxycycline-inducible retroviral plasmid, pTRE3G-sIL6R-TNFα-IL6- IRES-TKGFP, for stem cell-based combination gene therapy. We verified that TNF-α/IL-6/sIL-6R could efficiently induce tumorigenic C6 glioma cell differentiation, resulted in down-regulating the cell proliferation rate and the tumorigenicity of glioma cells and up-regulating the production of differentiation markers, such as connexin-43. Furthermore, gap junctions could enhance the bystander effect in suicide gene therapy. Consequently, we found that the retroviral plasmid transfected NSCs exerted stronger remedial effects on tumorigenic C6 glioma cells through the combination of differentiation and suicide gene therapy than by suicide gene therapy alone. This study is also the first case applying NSCs to conduct the combination of differentiation and herpes simplex type 1 thymidine kinase (TK)/ ganciclovir (GCV) based-suicide gene therapy on glioma cells.

    Contents 致謝 (i) Abstract (ii) 中文摘要 (iv) Abbreviations (vi) Contents (x) Chapter 1 Introduction (1) 1.1 Brain cancer (1) 1.2 Cancer stem cell therapy (1) 1.3 Enhanced IL-6 signaling for differentiation of tumorigenic C6 glioma cells (2) 1.4 Stem cell-based gene therapy (5) Chapter 2 Materials and Methods (9) 2.1 Cell cultures and restriction enzymes (9) 2.2 RNA extraction and RT-PCR (9) 2.3 Western blot analysis (10) 2.4 Dye coupling assay (12) 2.5 Cell proliferation assay (12) 2.6 Apoptosis and necrosis detection (13) 2.7 Soft agar assay (14) 2.8 Sphere formation assay (14) 2.9 Construction of doxycycline-inducible retroviral plasmid (15) 2.10 Retroviral system (18) 2.11 Cytotoxicity assay (19) 2.12 Cell sorting (19) 2.13 Functional analysis of PTRE3G (20) 2.14 Puromycin selection (20) 2.15 Combination of differentiation and suicide gene therapy (21) 2.16 Statistical Analysis (22) Chapter 3 Results (23) Part I: Differentiation of tumorigenic C6 glioma cells induced by enhanced IL-6 signaling (23) 3.1 The expression of IL-6 efficiently triggered by TNF-α/IL6/sIL-6R (23) 3.2 Differentiation of C6 glioma cells induced by TNF-α/IL-6/sIL-6R as evidenced by changes in biomarker levels (23) 3.3 Decrease of the proliferation rate in C6 glioma cells by TNF-α/IL-6/sIL-6R (24) 3.4 Downregulation of the tumorigenicity in C6 glioma cells by TNF-α/IL-6/sIL-6R (25) 3.5 Part I summary: Differentiation of tumorigenic C6 glioma cells induced by enhanced IL-6 signaling (27) Results Part II: Neural stem cell-based combination of differentiation and suicide gene therapy for tumorigenic C6 glioma cells (27) 3.6 Construction and functional analysis of pQcXIX-TKGFP (27) 3.7 Construction and functional analysis of pTRE3G-TKGFP (29) 3.8 Construction of pTRE3G-sIL6R-TNFα-IL6-IRES-TKGFP (30) 3.9 Tumorigenic C6 glioma cells treated with combined differentiation and suicide gene therapy by C17.2 NSCs (30) 3.10 Part II summary: Neural stem cell-based combination of differentiation and suicide gene therapy for tumorigenic C6 glioma cells (32) Chapter 4 Discussion (33) 4.1 Differentiation of Tumorigenic C6 Glioma Cells induced by Enhanced IL-6 signaling (33) 4.2 Neural stem cell-based combination of differentiation and suicide gene therapy for tumorigenic C6 glioma cells (37) Chapter 5 Figures and Tables (42) Figure 1. Upregulation of IL-6 in C6 glioma cells (42) Figure 2. The differentiation state of C6 glioma cells determined according to biomarkers (43) Figure 3. Upregulation of gap junction in C6 glioma cells (44) Figure 4. The proliferation rate of C6 glioma cells reduced by TNF-α/IL-6/sIL-6R (45) Figure 5. Downregulation of the tumorigenicity in C6 glioma cells evidenced by the soft agar assay (46) Figure 6. Downregulation of the tumorigenicity in C6 glioma cells evidenced by the sphere formation assay (47) Figure 7. The size distribution of spheres (48) Figure 8. Construction of TK-GFP fusion protein (49) Figure 9. Functional analysis of TK in TK-GFP fusion protein (50) Figure 10. Functional analysis of GFP in TK-GFP fusion protein (51) Figure 11. Construction of pTRE3G-TKGFP (52) Figure 12. Functional analysis of PTRE3G in pTRE3G-TKGFP (53) Figure 13. Construction of three cytokine genes for differentiation therapy into pTRE3G-TKGFP (54) Figure 14. Cytotoxicity effect exerted by C17.2 NSCs through differentiation therapy combined with suicide gene therapy (55) Figure 15. Participation of connexin-43 in the astrocytic differentiation of tumorigenic C6 glioma cells (56) Figure 16. Combined differentiation and suicide gene therapy performed by C17.2 NSCs against tumorigenic C6 glioma (57) Table 1. PCR primers specific for Il-6 and Gapdh (58) Table 2. PCR primers for construction of doxycycline-inducible retroviral plasmid (59) Table 3. PCR primers specific for Tet-On 3G transactivator (60) Supplemental information (61) Supplemental information 1. pHSV1tk-AcGFP vector sequence (61) Supplemental information 2. pQcXIX-TKGFP vector sequence (67) Supplemental information 3. pTRE3G-TKGFP vector sequence (75) Supplemental information 4. pTRE3G-sIL6R-TNFα-IL6-IRES-TKGFP vector sequence (83) Appendixes (93) Appendix I. The remedial strategies for CSCs (93) Appendix II: Classic- and trans-signaling of IL-6 (94) Appendix III: Process of suicide gene therapy (95) References (96)

    1. Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C and Barnholtz-Sloan JS: CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2011-2015. Neuro Oncol 20: iv1-iv86, 2018.
    2. Louis DN: Molecular pathology of malignant gliomas. Annu Rev Pathol 1: 97-117, 2006.
    3. Reya T, Morrison SJ, Clarke MF and Weissman IL: Stem cells, cancer, and cancer stem cells. Nature 414: 105-111, 2001.
    4. Polyak K and Hahn WC: Roots and stems: Stem cells in cancer. Nat Med 12: 296-300, 2006.
    5. Bomken S, Fiser K, Heidenreich O and Vormoor J: Understanding the cancer stem cell. Br J Cancer 103: 439-445, 2010.
    6. Ghiaur G, Gerber J and Jones RJ: Concise review: Cancer stem cells and minimal residual disease. Stem Cells 30: 89-93, 2012.
    7. Papaccio F, Paino F, Regad T, Papaccio G, Desiderio V and Tirino V: Concise review: Cancer cells, cancer stem cells, and mesenchymal stem cells: Influence in cancer development. Stem Cells Transl Med 6: 2115-2125, 2017.
    8. Frank NY, Schatton T and Frank MH: The therapeutic promise of the cancer stem cell concept. J Clin Invest 120: 41-50, 2010.
    9. Piccirillo SG, Reynolds BA, Zanetti N, Lamorte G, Binda E, Broggi G, Brem H, Olivi A, Dimeco F and Vescovi AL: Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444: 761-765, 2006.
    10. Lotem J and Sachs L: Epigenetics and the plasticity of differentiation in normal and cancer stem cells. Oncogene 25: 7663-7672, 2006.
    11. Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X, Su F, Lieberman J, et al: Let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131: 1109-1123, 2007.
    12. Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA and Lander ES: Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138: 645-659, 2009.
    13. Takanaga H, Yoshitake T, Hara S, Yamasaki C and Kunimoto M: cAMP-induced astrocytic differentiation of C6 glioma cells is mediated by autocrine interleukin-6. J Biol Chem 279: 15441-15447, 2004.
    14. Taga T and Fukuda S: Role of IL-6 in the neural stem cell differentiation. Clin Rev Allergy Immunol 28: 249-256, 2005.
    15. Takanaga H, Yoshitake T, Yatabe E, Hara S and Kunimoto M: Beta-naphthoflavone disturbs astrocytic differentiation of C6 glioma cells by inhibiting autocrine interleukin-6. J Neurochem 90: 750-757, 2004.
    16. Shu M, Zhou Y, Zhu W, Wu S, Zheng X and Yan G: Activation of a pro-survival pathway IL-6/JAK2/STAT3 contributes to glial fibrillary acidic protein induction during the cholera toxin-induced differentiation of C6 malignant glioma cells. Mol Oncol 5: 265-272, 2011.
    17. Hirano T, Yasukawa K, Harada H, Taga T, Watanabe Y, Matsuda T, Kashiwamura S, Nakajima K, Koyama K, Iwamatsu A, et al: Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature 324: 73-76, 1986.
    18. Gruol DL and Nelson TE: Physiological and pathological roles of interleukin-6 in the central nervous system. Mol Neurobiol 15: 307-339, 1997.
    19. Kishimoto T: IL-6: From its discovery to clinical applications. Int Immunol 22: 347-352, 2010.
    20. Hama T, Miyamoto M, Tsukui H, Nishio C and Hatanaka H: Interleukin-6 as a neurotrophic factor for promoting the survival of cultured basal forebrain cholinergic neurons from postnatal rats. Neurosci Lett 104: 340-344, 1989.
    21. Scheller J, Chalaris A, Schmidt-Arras D and Rose-John S: The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta 1813: 878-888, 2011.
    22. Hoesel B and Schmid JA: The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer 12: 86, 2013.
    23. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G and Schaper F: Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 374: 1-20, 2003.
    24. Zheng X, Shen G, Yang X and Liu W: Most C6 cells are cancer stem cells: Evidence from clonal and population analyses. Cancer Res 67: 3691-3697, 2007.
    25. Fang KM, Yang CS, Lin TC, Chan TC and Tzeng SF: Induced interleukin-33 expression enhances the tumorigenic activity of rat glioma cells. Neuro-oncology 16: 552-566, 2014.
    26. Culver KW, Ram Z, Wallbridge S, Ishii H, Oldfield EH and Blaese RM: In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 256:1550-1552, 1992.
    27. Portnow J, Synold TW, Badie B, Tirughana R, Lacey SF, D'Apuzzo M, Metz MZ, Najbauer J, Bedell V, Vo T, et al: Neural stem cell-based anticancer gene therapy: A first-in-human study in recurrent high-grade glioma patients. Clin Cancer 23: 2951-2960, 2017.
    28. Aboody KS, Brown A, Rainov NG, Bower KA, Liu S, Yang W, Small JE, Herrlinger U, Ourednik V, Black PM, et al: Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci U S A 97:12846-12851, 2000.
    29. Stuckey DW and Shah K: Stem cell-based therapies for cancer treatment: Separating hope from hype. Nat Rev Cancer 14: 683-691, 2014.
    30. Duarte S, Carle G, Faneca H, de Lima MC and Pierrefite-Carle V: Suicide gene therapy in cancer: where do we stand now? Cancer Lett 324: 160-170, 2012.
    31. Colombo MP and Trinchieri G: Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev 13: 155-168, 2002.
    32. Kim SS, Harford JB, Moghe M, Slaughter T, Doherty C and Chang EH: A tumor-targeting nanomedicine carrying the p53 gene crosses the blood-brain barrier and enhances anti-PD-1 immunotherapy in mouse models of glioblastoma. Int J Cancer 145: 2535-2546, 2019.
    33. Geletneky K, Hajda J, Angelova AL, Leuchs B, Capper D, Bartsch AJ, Neumann JO, Schöning T, Hüsing J, Beelte B, et al: Oncolytic H-1 parvovirus shows safety and signs of immunogenic activity in a first phase I/IIa glioblastoma trial. Mol Ther 25: 2620-2634, 2017.
    34. Mooney R, Hammad M, Batalla‐Covello J, Abdul Majid A and Aboody KS: Concise review: Neural stem cell‐mediated targeted cancer therapies. Stem Cells Transl Med 7: 740-747, 2018.
    35. Mullen CA, Kilstrup M and Blaese RM: Transfer of the bacterial gene for cytosine deaminase to mammalian cells confers lethal sensitivity to 5-fluorocytosine: A negative selection system. Proc Natl Acad Sci U S A 89: 33-37, 1992.
    36. Beltinger C, Fulda S, Kammertoens T, Meyer E, Uckert W and Debatin KM: Herpes simplex virus thymidine kinase/ganciclovir-induced apoptosis involves ligand-independent death receptor aggregation and activation of caspases. Proc Natl Acad Sci U S A 96: 8699-8704, 1999.
    37. Lee AS, Tang C, Rao MS, Weissman IL and Wu JC: Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med 19: 998-1004, 2013.
    38. Park J, Kim CG, Shim JK, Kim JH, Lee H, Lee JE, Kim MH, Haam K, Jung I, Park SH, et al: Effect of combined anti-PD-1 and temozolomide therapy in glioblastoma. Oncoimmunology 8: e1525243, 2018.
    39. Cammarata FP, Torrisi F, Forte GI, Minafra L, Bravatà V, Pisciotta P, Savoca G, Calvaruso M, Petringa G, Cirrone GAP, et al: Proton therapy and Src family kinase inhibitor combined treatments on U87 human glioblastoma multiforme cell line. Int J Mol Sci 20: 4745, 2019.
    40. Nakase T and Naus CC: Gap junctions and neurological disorders of the central nervous system. Biochim Biophys Acta 1662: 149-158, 2004.
    41. Asklund T, Appelskog IB, Ammerpohl O, Langmoen IA, Dilber MS, Aints A, Ekström TJ and Almqvist PM: Gap junction-mediated bystander effect in primary cultures of human malignant gliomas with recombinant expression of the HSVtk gene. Exp Cell Res 284: 185-195, 2003.
    42. Schichor C, Birnbaum T, Etminan N, Schnell O, Grau S, Miebach S, Aboody K, Padovan C, Straube A, Tonn JC, et al: Vascular endothelial growth factor A contributes to glioma-induced migration of human marrow stromal cells (hMSC). Exp Neurol 199: 301-310, 2006.
    43. Jurvansuu J, Zhao Y, Leung DS, Boulaire J, Yu YH, Ahmed S and Wang S: Transmembrane protein 18 enhances the tropism of neural stem cells for glioma cells. Cancer Res 68: 4614-4622, 2008.
    44. Borowicz S, Van Scoyk M, Avasarala S, Karuppusamy Rathinam MK, Tauler J, Bikkavilli RK and Winn RA: The soft agar colony formation assay. J Vis Exp: e51998, 2014.
    45. Shaimardanova AA, Kitaeva KV, Abdrakhmanova II, Chernov VM, Rutland CS, Rizvanov AA, Chulpanova DS and Solovyeva VV: Production and application of multicistronic constructs for various human disease therapies. Pharmaceutics 11: 580, 2019.
    46. Van Wagoner NJ, Oh JW, Repovic P and Benveniste EN: Interleukin-6 (IL-6) production by astrocytes: Autocrine regulation by IL-6 and the soluble IL-6 receptor. J Neurosci 19: 5236-5244, 1999.
    47. Eng LF: Glial fibrillary acidic protein (GFAP): The major protein of glial intermediate filaments in differentiated astrocytes. J Neuroimmunol 8: 203-214, 1985.
    48. Niehof M, Streetz K, Rakemann T, Bischoff SC, Manns MP, Horn F and Trautwein C: Interleukin-6-induced tethering of STAT3 to the LAP/C/EBPbeta promoter suggests a new mechanism of transcriptional regulation by STAT3. J Biol Chem 276: 9016-9027, 2001.
    49. Vleminckx K, Vakaet Jr L, Mareel M, Fiers W and Van Roy F: Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell 66: 107-119, 1991.
    50. Yu SC, Xiao HL, Jiang XF, Wang QL, Li Y, Yang XJ, Ping YF, Duan JJ, Jiang JY, Ye XZ, et al: Connexin 43 reverses malignant phenotypes of glioma stem cells by modulating E-cadherin. Stem Cells 30: 108-120, 2012.
    51. Huang RP, Hossain MZ, Sehgal A and Boynton AL: Reduced connexin43 expression in high-grade human brain glioma cells. J Surg Oncol 70: 21-24, 1999.
    52. Soroceanu L, Manning Jr TJ and Sontheimer H: Reduced expression of connexin-43 and functional gap junction coupling in human gliomas. Glia 33: 107-117, 2001.
    53. Xu D, Wang Q, Gruber A, Björkholm M, Chen Z, Zaid A, Selivanova G, Peterson C, Wiman KG and Pisa P: Downregulation of telomerase reverse transcriptase mRNA expression by wild type p53 in human tumor cells. Oncogene 19: 5123-5133, 2000.
    54. Kurki P, Vanderlaan M, Dolbeare F, Gray J and Tan EM: Expression of proliferating cell nuclear antigen (PCNA)/cyclin during the cell cycle. Exp Cell Res 166: 209-219, 1986.
    55. Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U and Frisen J: Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96: 25-34, 1999.
    56. Sakakibara S, Imai T, Hamaguchi K, Okabe M, Aruga J, Nakajima K, Yasutomi D, Nagata T, Kurihara Y, Uesugi S, et al: Mouse-Musashi-1, a neural RNA-binding protein highly enriched in the mammalian CNS stem cell. Dev Biol 176: 230-242, 1996.
    57. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD and Dirks PB: Identification of human brain tumour initiating cells. Nature 432: 396-401, 2004.
    58. Sharma P, Yan F, Doronina VA, Escuin-Ordinas H, Ryan MD and Brown JD: 2A peptides provide distinct solutions to driving stop-carry on translational recoding. Nucleic Acids Res 40: 3143-3151, 2012.
    59. Yu SC, Xiao HL, Jiang XF, Wang QL, Li Y, Yang XJ, Ping YF, Duan JJ, Jiang JY, Ye XZ, et al: Connexin 43 reverses malignant phenotypes of glioma stem cells by modulating e-cadherin. Stem Cells 30: 108-120, 2012.
    60. Tanabe K, Matsushima-Nishiwaki R, Yamaguchi S, Iida H, Dohi S and Kozawa O: Mechanisms of tumor necrosis factor-alpha-induced interleukin-6 synthesis in glioma cells. J Neuroinflammation 7: 16, 2010.
    61. Gupta PB, Chaffer CL and Weinberg RA: Cancer stem cells: Mirage or reality? Nat Med 15: 1010-1012, 2009.
    62. Shackleton M, Quintana E, Fearon ER and Morrison SJ: Heterogeneity in cancer: Cancer stem cells versus clonal evolution. Cell 138: 822-829, 2009.
    63. Islam O, Gong X, Rose-John S and Heese K: Interleukin-6 and neural stem cells: More than gliogenesis. Mol Biol Cell 20: 188-199, 2009.
    64. Nakashima K and Taga T: Mechanisms underlying cytokine-mediated cell-fate regulation in the nervous system. Mol Neurobiol 25: 233-244, 2002.
    65. Barkho BZ, Song H, Aimone JB, Smrt RD, Kuwabara T, Nakashima K, Gage FH and Zhao X: Identification of astrocyte-expressed factors that modulate neural stem/progenitor cell differentiation. Stem Cells Dev 15: 407-421, 2006.
    66. Gallagher D, Norman AA, Woodard CL, Yang G, Gauthier-Fisher A, Fujitani M, Vessey JP, Cancino GI, Sachewsky N, Woltjen K, et al: Transient maternal IL-6 mediates long-lasting changes in neural stem cell pools by deregulating an endogenous self-renewal pathway. Cell Stem Cell 13: 564-576, 2013.
    67. Hossain A, Gumin J, Gao F, Figueroa J, Shinojima N, Takezaki T, Priebe W, Villarreal D, Kang SG, Joyce C, et al: Mesenchymal stem cells isolated from human gliomas increase proliferation and maintain stemness of glioma stem cells through the IL-6/gp130/STAT3 pathway. Stem Cells 33: 2400-2415, 2015.
    68. Plaks V, Kong N and Werb Z: The cancer stem cell niche: How essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 16: 225-238, 2015.
    69. Benveniste EN, Sparacio SM, Norris JG, Grenett HE and Fuller GM: Induction and regulation of interleukin-6 gene expression in rat astrocytes. J Neuroimmunol 30: 201-212, 1990.
    70. Benveniste EN, Kwon J, Chung WJ, Sampson J, Pandya K and Tang LP: Differential modulation of astrocyte cytokine gene expression by TGF-beta. J Immunol 153: 5210-5221, 1994.
    71. Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W, et al: Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9: 391-403, 2006.
    72. Li A, Walling J, Kotliarov Y, Center A, Steed ME, Ahn SJ, Rosenblum M, Mikkelsen T, Zenklusen JC and Fine HA: Genomic changes and gene expression profiles reveal that established glioma cell lines are poorly representative of primary human gliomas. Mol Cancer Res 6: 21-30, 2008.
    73. Tirino V, Desiderio V, d'Aquino R, De Francesco F, Pirozzi G, Graziano A, Galderisi U, Cavaliere C, De Rosa A, Papaccio G, et al: Detection and characterization of CD133+ cancer stem cells in human solid tumours. PLoS One 3: e3469, 2008.
    74. Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ, Aigner L, Brawanski A, Bogdahn U and Beier CP: CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67: 4010-4015, 2007.
    75. Bonnet D and Dick JE: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3: 730-737, 1997.
    76. Kelly PN, Dakic A, Adams JM, Nutt SL and Strasser A: Tumor growth need not be driven by rare cancer stem cells. Science 317: 337, 2007.
    77. Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM and Morrison SJ: Efficient tumour formation by single human melanoma cells. Nature 456: 593-598, 2008.
    78. Kreso A and Dick JE: Evolution of the cancer stem cell model. Cell Stem Cell 14: 275-291, 2014.
    79. Yaghoubi SS, Campbell DO, Radu CG and Czernin J: Positron emission tomography reporter genes and reporter probes: Gene and cell therapy applications. Theranostics 2: 374-391, 2012.
    80. Kumar NM and Gilula NB: The gap junction communication channel. Cell 84: 381-388, 1996.
    81. Spray DC, Hanstein R, Lopez-Quintero SV, Stout RF Jr, Suadicani SO and Thi MM: Gap junctions and bystander effects: Good samaritans and executioners. Wiley Interdiscip Rev Membr Transp Signal 2: 1-15, 2013.
    82. Honeth G, Staflin K, Kalliomaki S, Lindvall M, Kjellman C: Chemokine-directed migration of tumor-inhibitory neural progenitor cells towards an intracranially growing glioma. Exp Cell Res 312: 1265-76, 2006.
    83. Pulukuri SM, Gorantla B, Dasari VR, Gondi CS, Rao JS: Epigenetic upregulation of urokinase plasminogen activator promotes the tropism of mesenchymal stem cells for tumor cells. Mol Cancer Res 8: 1074-83, 2010.
    84. Ratajczak MZ, Kim CH, Abdel-Latif A, Schneider G, Kucia M, Morris AJ, Laughlin MJ, Ratajczak J: A novel perspective on stem cell homing and mobilization: Review on bioactive lipids as potent chemoattractants and cationic peptides as underappreciated modulators of responsiveness to SDF-1 gradients. Leukemia 26: 63-72, 2012.
    85. Klopp AH, Spaeth EL, Dembinski JL, Woodward WA, Munshi A, Meyn RE, Cox JD, Andreeff M, Marini FC: Tumor irradiation increases the recruitment of circulating mesenchymal stem cells into the tumor microenvironment. Cancer Res 67: 11687-95, 2007.
    86. Torikai H, Reik A, Soldner F, Warren EH, Yuen C, Zhou Y, Crossland DL, Huls H, Littman N, Zhang Z, et al: Toward eliminating HLA class I expression to generate universal cells from allogeneic donors. Blood 122: 1341-9, 2013.
    87. Purwanti YI, Chen C, Lam DH, Wu C, Zeng J, Fan W, Wang S: Antitumor effects of CD40 ligand-expressing endothelial progenitor cells derived from human induced pluripotent stem cells in a metastatic breast cancer model. Stem Cells Transl Med 3: 923-35, 2014.
    88. Seo SH, Kim KS, Park SH, Suh YS, Kim SJ, Jeun SS, Sung YC: The effects of mesenchymal stem cells injected via different routes on modified IL-12-mediated antitumor activity. Gene Ther 18: 488-95, 2011.
    89. Reagan MR, Seib FP, McMillin DW, Sage EK, Mitsiades CS, Janes SM, Ghobrial IM, Kaplan DL: Stem cell implants for cancer therapy: Trail-expressing mesenchymal stem cells target cancer cells in situ. J Breast Cancer 15: 273-82, 2012.
    90. Tobias AL, Thaci B, Auffinger B, Rincon E, Balyasnikova IV, Kim CK, Han Y, Zhang L, Aboody KS, Ahmed AU, et al: The timing of neural stem cell-based virotherapy is critical for optimal therapeutic efficacy when applied with radiation and chemotherapy for the treatment of glioblastoma. Stem Cells Transl Med 2: 655-66, 2013.
    91. Okura H, Smith CA, Rutka JT: Gene therapy for malignant glioma. Mol Cell Ther 2: 21, 2014.

    QR CODE