研究生: |
許雅婷 Hsu, Ya-Ting |
---|---|
論文名稱: |
AGV 最佳車數研究 - 以 IC 封裝廠為例 Optimal AGV Fleet Sizing in IC Packaging Plant |
指導教授: |
陳建良
Chen, James C. |
口試委員: |
陳子立
Chen, Tzu-Li 陳盈彥 Chen, Yin-Yann |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 全球營運管理碩士雙聯學位學程 Dual Master Program for Global Operation Management |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 40 |
中文關鍵詞: | 無人搬運車 、FlexSim模擬軟體 、混線生產 、IC封裝廠 、實驗設計法 |
外文關鍵詞: | AGV, FlexSim Software, Mixed-Model Production, IC Packaging, DOE |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要目標為協助 IC 封裝廠或具有類似加工特性之生產系統,在評估導入無人搬運車前的預算規劃階段,藉由本研究介紹的FlexSim 系統模擬建立與真實環境相似的模型並使用實驗設計法 (DOE) 針對模擬結果進行績效評估,進而幫助決策者決定多少數量的無人搬運車將是最有效率之方案。
本實驗的控制因子包含(1)訂單中產品A與產品B的比例、(2)工廠的工作負荷、(3)派車法則及(4) AGV車隊規模。關鍵績效指標 (KPI) 為每週產出工件數、車輛利用率、生產前置時間。本研究總共探討了 84 種情境,並透過分析控制因子與關鍵績效指標之間的主效果和交互作用,觀察到派車法則和AGV數量對系統效能產生顯著影響。最後根據實驗結果,我們獲得了本研究參考之IC封裝廠最佳AGV數量。
This study is to evaluate the optimal automated guided vehicle (AGV) fleet sizing for IC packaging plants or other factories with similar processing characteristics before introducing the expensive AGV system. By using FlexSim simulation model and Design of Experiment (DOE) in this study, the optimal AGV fleet size was determined considering some critical performance indicators.
The control factors include (1) the ratio of product A and B in the order, (2) the work loading of the plant, (3) dispatching rule, and (4) AGV fleet size. Key performance indicators (KPI) are weekly throughput, vehicle utilization rate, and production lead time. Eighty-four scenarios were investigated in this research. By analyzing the main effect and the interaction among control factors and KPI, dispatching rules and the number of AGV were observed resulting in a significant impact on system performance. According to the experiment results, the optimal fleet sizing was obtained for the reference IC packaging plant.
Azimi, P., Haleh, H., & Alidoost, M. (2010). The selection of the best control rule
for a multiple-load AGV system using simulation and fuzzy MADM in a flexible manufacturing system. Modelling and Simulation in Engineering, 2010. https://doi.org/10.1155/2010/821701
Beamon, B. M., & Chen, V. C. P. (1998). Performability-Based Fleet Sizing in a
Material Handling System. The International Journal of Advanced Manufactureing Technology, 441–449.
Chang, K. H., Huang, Y. H., & Yang, S. P. (2014). Vehicle fleet sizing for automated
material handling systems to minimize cost subject to time constraints. IIE Transactions (Institute of Industrial Engineers), 46(3), 301–312. https://doi.org/10.1080/0740817X.2013.813095
Chen, J. C., Chen, T. L., & Teng, Y. C. (2021). Meta-model based simulation
optimization for automated guided vehicle system under different charging mechanisms. Simulation Modelling Practice and Theory, 106(October 2020), 102208. https://doi.org/10.1016/j.simpat.2020.102208
Egbelu, P. J., & Tanchoco, J. M. A. (1984). Characterization of automatic guided
vehicle dispatching rules. International Journal of Production Research, 22(3), 359–374. https://doi.org/10.1080/00207548408942459
Farahvash, P., & Boucher, T. O. (2004). A multi-agent architecture for control of
AGV systems. Robotics and Computer-Integrated Manufacturing, 20(6 SPEC. ISS.), 473–483. https://doi.org/10.1016/j.rcim.2004.07.005
Kane, V. E. (1986). Process Capability Indices. Journal of Quality Technology,
18(1), 41–52. https://doi.org/10.1080/00224065.1986.11978984
Levitt, M. E., & Abraham, J. A. (2002). Just-in-time methods for semiconductor
40
manufacturing. 3–9. https://doi.org/10.1109/asmc.1990.111212
Montgomery, D. C. (2017). Design and Analysis of Experiments.
Rashidah Mohamad, N., Hafidz Fazli Md Fauadi, M., Fairus Zainudin, S., Zaki
Mohamed Mohamed Noor, A., Azni Jafar, F., & Mat Ali, M. (2018). Optimization of Material Transportation Assignment for Automated Guided Vehicle (AGV) System. International Journal of Engineering & Technology, 7(3.20), 334. https://doi.org/10.14419/ijet.v7i3.20.19269
Prasad, K., & Rangaswami, M. (1988). Analysis of different AGV control systems
in an integrated IC manufacturing facility, using computer simulation. Proceedings of the 1988 Winter Simulation Conference.
Raman, D., Nagalingam, S.V., Gurd, B. W., & Lin, G. C. I. (2009). Quantity of
material handling equipment-A queuing theory based approach. Robotics and Computer-Integrated Manufacturing, 25(2), 348–357. https://doi.org/10.1016/j.rcim.2008.01.004
Vivaldini, K., Rocha, L. F., Martarelli, N. J., Becker, M., & Moreira, A. P. (2016).
Integrated tasks assignment and routing for the estimation of the optimal number of AGVS. International Journal of Advanced Manufacturing Technology, 82(1–4), 719–736. https://doi.org/10.1007/s00170-015-7343-4
凌繼遠. (2006). 半導體產業多階多廠產能分配機制之構建. 國立交通大學.
王宏鍇, 任恒毅, 李孟樺, 陸行, 陳勝一, 喻奉天, & 薪威科技作者群. (2020).
生產智動化系統模擬 FlexSim for Industry X.0.
蔡瑜明. (2003). 半導體後段 IC 封裝最適排程之研究 禁忌搜尋法之應用. 國
立中山大學.