研究生: |
俞若婷 Yu, Alison |
---|---|
論文名稱: |
GL_2(F_q) 與 GL_3(F_q) 的 Deligne-Lusztig 虛擬特徵 Deligne-Lusztig virtual characters of GL_2(F_q) and GL_3(F_q) |
指導教授: |
潘戍衍
Pan, Shu-Yen |
口試委員: |
鄭志豪
楊一帆 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 41 |
中文關鍵詞: | 群表現 |
外文關鍵詞: | character, Deligne-Lusztig, GL_2(F_q), GL_3(F_q) |
相關次數: | 點閱:38 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The general method to find irreducible representations of GL2(Fq) and GL3(Fq) is using induction from Borel subgroup B or parabolic subgroup P.
But there exists some irreducible characters which are not easy to find.
We have to compose such characters with not obvious way.
Deligne-Lusztig give us better method to find irreducible characters of GL2(Fq) and GL3(Fq) by virtual characters RGT\theta for a pair of a maximal torus T and a character \theta of T.
In this thesis we work out all Deligne-Lusztig virtual characters of GL2(Fq) and GL3(Fq).
The general method to find irreducible representations of GL2(Fq) and GL3(Fq) is using induction from Borel subgroup B or parabolic subgroup P.
But there exists some irreducible characters which are not easy to find.
We have to compose such characters with not obvious way.
Deligne-Lusztig give us better method to find irreducible characters of GL2(Fq) and GL3(Fq) by virtual characters RGT\theta for a pair of a maximal torus T and a character \theta of T.
In this thesis we work out all Deligne-Lusztig virtual characters of GL2(Fq) and GL3(Fq).
[1]R. W. Carter, Finite Groups of Lie Type, Wiley-Interscience, New York, 1985.
[2]F. Digne and J. Michel, Representations of Finite Group of Lie Type, Cambridge University, Great Britain, 1991.
[3]W. Fulton and J. Harris, Representation Theory : A First Course, Springer-Verlag, New York, 1991.
[4]J. E. Humphreys, Linear Algebraic Groups, Springer-Verlag, New York, 1975.
[5]J.-P. Serre, Linear Representations of Finite Groups, Springer-Verlag, New York, 1977.
[6]R. Steinberg, The representations of GL(3,q), GL(4,q), PGL(3,q), PGL(4,q), Canadian Journal of Mathematics, Vol. 3, 1951, 225--235.