研究生: |
彭羽均 Peng, Yu-Jun |
---|---|
論文名稱: |
環狀LTIIb-B5的結構研究 The structural study of cyclic LTIIb-B5 |
指導教授: |
蘇士哲
Sue, Shih-Che |
口試委員: |
陳金榜
Chen, Chin-Pan 林珮君 Lin, Pei-Chun 羅惟正 Lo, Wei-Cheng |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 74 |
中文關鍵詞: | 內含肽 、環狀蛋白 、黏膜佐劑 、五聚體 、神經節糖苷 、反式剪接 、第II型熱不穩定腸毒素 |
外文關鍵詞: | cyclic protein, pentamer, trans-splicing, type II heat-labile enterotoxin, LTIIb |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
內含肽(Intein)具有連接肽骨架的能力,這樣的作用機制能夠延伸運用在環化多肽和蛋白質。根據過去的文獻提及環化的蛋白質具有較優異的抗熱性且在水溶液中表現得非常穩定,因此內含肽介導的分子內反應成為蛋白質工程中的常用且熱門的策略。在本篇的研究中,我們欲透過內含肽環化策略來形成環狀的第II型熱不穩定腸毒素B次單元,簡稱LTIIb-B5。為了產生出我們欲探討的環狀LTIIb-B5,我們使用了重組蛋白中的內含肽其剪接化學鍵的功能,藉此設計出有效的環狀蛋白黏膜佐劑。接著進行Wildtype和環狀LTIIb-B5的結構差異性比較,本篇研究使用的實驗方法包括MALDI-TOF-MS、分析型超高速離心(AUC)、核磁共振技術(NMR)以及Bio-SAXS和X射線繞射。在數個實驗中我們都證實環狀LTIIb-B5如同Wildtype具有五聚體的結構,其中在 X 射線所分析出的五聚體中能提供我們一項更為詳細的訊息:LTIIb-B5在骨架環化後結構並沒有太大的改變。重要的是環狀LTIIb-B5在高溫環境的NMR量測下具有良好耐熱性,且 1H15N 二維光譜滴定實驗顯示其與下游的醣類受體GD1a有相互作用,此作用力證據能與我們在晶體結構上所觀察到的醣類結合口袋相互佐證。
我們期望環狀LTIIb-B5能夠改善它們在生物學上的應用,例如增加在體內的半衰期,或是提升與上下游受體的結合力,進而提高LTIIb-B5佐劑活性的強度。因此在這篇論文中,我們提供內含肽介導環化作用提升LTIIb-B5穩定性的證明,期望未來環狀LTIIb-B5有利於人體疫苗開發上及廣泛應用於相關領域中。
Intein shows ability to ligate polypeptide backbone. The same enzyme mechanism could be extended to cyclize peptides and proteins. As the previous reports, the cyclized proteins contained increased thermo-resistance in solution. The employment of intein in protein
engineering becomes an attractive strategy. In our study, we consider to engineer a potent mucosal protein adjuvant by using the B subunit of type II heat labile enterotoxin (LTIIb-B5) as a target. A strategy to create a cyclic LTIIb-B5 was developed by incorporating the Intein
protein scaffold. The LTIIb-B5 was successfully cyclized during the expression. To realize the structural similarities and differences between wildtype and cyclic LTIIb-B5, the experimental methods including MALDI-TOF-MS, Analytical Ultracentrifugation, Nuclear Magnetic Resonance, Bio-SAXS and X-ray diffraction were used. The experiments consistently conclude the same conformation of P5 symmetry as identified in wildtype LTIIbB5. The X-ray structure further revealed the details of the pentameric structure, indicating no significant change caused by the backbone cyclization. Most importantly, the cyclic protein not only showed good thermal stability during the high-temperature NMR measurement, but also demonstrated the binding to its downstream ligand, GD1a. The result was supported by the similar carbohydrate binding pockets on cyclic LTIIb-B5 surface. Thus, we expect the physical property of cyclic LTIIb-B5 may improve its biological applications, such as elongating half-life in the body or better binding between the upstream and downstream receptors, thereby improving the potential of being the protein adjuvant. Here, we prove a concept of creating stable LTIIb-B5 by cyclization. The study might benefit the development of human vaccines and hopefully be used in related fields in the future.
1. Wang, H.; Wang, L.; Zhong, B.; Dai, Z., Protein Splicing of Inteins: A Powerful Tool in
Synthetic Biology. Frontiers in Bioengineering and Biotechnology 2022, 10.
2. Shah, N. H.; Muir, T. W., Inteins: Nature's Gift to Protein Chemists. Chem Sci 2014, 5 (1), 446-
461.
3. Shih, C. K.; Wagner, R.; Feinstein, S.; Kanik-Ennulat, C.; Neff, N., A dominant trifluoperazine
resistance gene from Saccharomyces cerevisiae has homology with F0F1 ATP synthase and confers
calcium-sensitive growth. Mol Cell Biol 1988, 8 (8), 3094-103.
4. Hirata, R.; Ohsumk, Y.; Nakano, A.; Kawasaki, H.; Suzuki, K.; Anraku, Y., Molecular structure
of a gene, VMA1, encoding the catalytic subunit of H(+)-translocating adenosine triphosphatase from
vacuolar membranes of Saccharomyces cerevisiae. Journal of Biological Chemistry 1990, 265 (12),
6726-6733.
5. Gramespacher, J. A.; Stevens, A. J.; Thompson, R. E.; Muir, T. W., Improved protein splicing
using embedded split inteins. Protein Science 2018, 27 (3), 614-619.
6. Xu, M. Q.; Southworth, M. W.; Mersha, F. B.; Hornstra, L. J.; Perler, F. B., In vitro protein
splicing of purified precursor and the identification of a branched intermediate. Cell 1993, 75 (7),
1371-7.
7. Shemella, P.; Pereira, B.; Zhang, Y.; Van Roey, P.; Belfort, G.; Garde, S.; Nayak, S. K.,
Mechanism for Intein C-Terminal Cleavage: A Proposal from Quantum Mechanical Calculations.
Biophysical Journal 2007, 92 (3), 847-853.
8. Wood, D. W.; Camarero, J. A., Intein applications: from protein purification and labeling to
metabolic control methods. J Biol Chem 2014, 289 (21), 14512-9.
9. Southworth, M. W.; Amaya, K.; Evans, T. C.; Xu, M. Q.; Perler, F. B., Purification of proteins
fused to either the amino or carboxy terminus of the Mycobacterium xenopi gyrase A intein.
Biotechniques 1999, 27 (1), 110-4, 116, 118-20.
10. Wood, D. W.; Wu, W.; Belfort, G.; Derbyshire, V.; Belfort, M., A genetic system yields selfcleaving inteins for bioseparations. Nature Biotechnology 1999, 17 (9), 889-892.
11. Dawson, P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S. B., Synthesis of proteins by native
chemical ligation. Science 1994, 266 (5186), 776-9.
12. Muir, T. W.; Sondhi, D.; Cole, P. A., Expressed protein ligation: a general method for protein
engineering. Proc Natl Acad Sci U S A 1998, 95 (12), 6705-10.
13. Züger, S.; Iwai, H., Intein-based biosynthetic incorporation of unlabeled protein tags into
isotopically labeled proteins for NMR studies. Nat Biotechnol 2005, 23 (6), 736-40.
14. Jeon, H.; Lee, E.; Kim, D.; Lee, M.; Ryu, J.; Kang, C.; Kim, S.; Kwon, Y., Cell-Based Biosensors
Based on Intein-Mediated Protein Engineering for Detection of Biologically Active Signaling
Molecules. Analytical Chemistry 2018, 90 (16), 9779-9786.
15. Scott Charles, P.; Abel-Santos, E.; Wall, M.; Wahnon Daphne, C.; Benkovic Stephen, J.,
Production of cyclic peptides and proteins in vivo. Proceedings of the National Academy of Sciences
1999, 96 (24), 13638-13643.
16. Camarero, J. A.; Pavel, J.; Muir, T. W., Chemical Synthesis of a Circular Protein Domain:
Evidence for Folding-Assisted Cyclization. Angewandte Chemie International Edition 1998, 37 (3),
347-349.
17. Jackson, D. Y.; Burnier, J. P.; Wells, J. A., Enzymic Cyclization of Linear Peptide Esters Using
Subtiligase. Journal of the American Chemical Society 1995, 117 (2), 819-820.
18. Camarero, J. A.; Muir, T. W., Biosynthesis of a Head-to-Tail Cyclized Protein with Improved
Biological Activity. Journal of the American Chemical Society 1999, 121 (23), 5597-5598.
19. Tavassoli, A.; Lu, Q.; Gam, J.; Pan, H.; Benkovic, S. J.; Cohen, S. N., Inhibition of HIV Budding
by a Genetically Selected Cyclic Peptide Targeting the Gag−TSG101 Interaction. ACS Chemical Biology
2008, 3 (12), 757-764
20. Smith, H. W.; Halls, S., Studies on Escherichia coli enterotoxin. The Journal of Pathology and
Bacteriology 1967, 93 (2), 531-543.
21. Duan, Q.; Xia, P.; Nandre, R.; Zhang, W.; Zhu, G., Review of Newly Identified Functions
Associated With the Heat-Labile Toxin of Enterotoxigenic Escherichia coli. Frontiers in Cellular and
Infection Microbiology 2019, 9.
22. Haan, L. d.; Hirst, T. R., Cholera toxin: A paradigm for multi-functional engagement of cellular
mechanisms (Review). Molecular Membrane Biology 2004, 21 (2), 77-92.
23. Zalem, D.; Juhás, M.; Terrinoni, M.; King-Lyons, N.; Lebens, M.; Varrot, A.; Connell, T. D.;
Teneberg, S., Characterization of the ganglioside recognition profile of Escherichia coli heat-labile
enterotoxin LT-IIc. Glycobiology 2022, 32 (5), 391-403.
24. Connell, T. D., Cholera toxin, LT-I, LT-IIa and LT-IIb: the critical role of ganglioside binding in
immunomodulation by Type I and Type II heat-labile enterotoxins. Expert Review of Vaccines 2007, 6
(5), 821-834.
25. Tatsumoto, M.; Koga, M.; Gilbert, M.; Odaka, M.; Hirata, K.; Kuwabara, S.; Yuki, N., Spectrum
of neurological diseases associated with antibodies to minor gangliosides GM1b and GalNAc-GD1a.
Journal of Neuroimmunology 2006, 177 (1), 201-208.
26. Hajishengallis, G.; Tapping Richard, I.; Martin Michael, H.; Nawar, H.; Lyle Elizabeth, A.;
Russell Michael, W.; Connell Terry, D., Toll-Like Receptor 2 Mediates Cellular Activation by the B
Subunits of Type II Heat-Labile Enterotoxins. Infection and Immunity 2005, 73 (3), 1343-1349.
27. Clark Richard, J.; Fischer, H.; Dempster, L.; Daly Norelle, L.; Rosengren, K. J.; Nevin Simon, T.;
Meunier Frederic, A.; Adams David, J.; Craik David, J., Engineering stable peptide toxins by means of
backbone cyclization: Stabilization of the α-conotoxin MII. Proceedings of the National Academy of
Sciences 2005, 102 (39), 13767-13772.
28. Clark, R. J.; Craik, D. J., Invited reviewnative chemical ligation applied to the synthesis and
bioengineering of circular peptides and proteins. Peptide Science 2010, 94 (4), 414-422.
29. Clark, R. J.; Akcan, M.; Kaas, Q.; Daly, N. L.; Craik, D. J., Cyclization of conotoxins to improve
their biopharmaceutical properties. Toxicon 2012, 59 (4), 446-455.
30. Harford, S.; Dykes, C. W.; Hobden, A. N.; Read, M. J.; Halliday, I. J., Inactivation of the
Escherichia coli heat-labile enterotoxin by in vitro mutagenesis of the A-subunit gene. European
Journal of Biochemistry 1989, 183 (2), 311-316.
31. Norton Elizabeth, B.; Lawson Louise, B.; Mahdi, Z.; Freytag Lucy, C.; Clements John, D.;
Payne, S. M., The A Subunit of Escherichia coli Heat-Labile Enterotoxin Functions as a Mucosal
Adjuvant and Promotes IgG2a, IgA, and Th17 Responses to Vaccine Antigens. Infection and Immunity
2012, 80 (7), 2426-2435.
32. De Haan, L.; Verweij, W. R.; Feil, I. K.; Holtrop, M.; Hol, W. G. J.; Agsteribbe, E.; Wilschut, J.,
Role of GM1 binding in the mucosal immunogenicity and adjuvant activity of the Escherichia coli
heat-labile enterotoxin and its B subunit. Immunology 1998, 94 (3), 424-430.
33. van Rosmalen, M.; Krom, M.; Merkx, M., Tuning the Flexibility of Glycine-Serine Linkers To
Allow Rational Design of Multidomain Proteins. Biochemistry 2017, 56 (50), 6565-6574.
34. Mahmoudi Gomari, M.; Saraygord-Afshari, N.; Farsimadan, M.; Rostami, N.; Aghamiri, S.;
Farajollahi, M. M., Opportunities and challenges of the tag-assisted protein purification techniques:
Applications in the pharmaceutical industry. Biotechnology Advances 2020, 45, 107653.
35. Shih, O.; Liao, K.-F.; Yeh, Y.-Q.; Su, C.-J.; Wang, C.-A.; Chang, J.-W.; Wu, W.-R.; Liang, C.-C.;
Lin, C.-Y.; Lee, T.-H.; Chang, C.-H.; Chiang, L.-C.; Chang, C.-F.; Liu, D.-G.; Lee, M.-H.; Liu, C.-Y.; Hsu, T.-
W.; Mansel, B.; Ho, M.-C.; Shu, C.-Y.; Lee, F.; Yen, E.; Lin, T.-C.; Jeng, U., Performance of the new
biological small- and wide-angle X-ray scattering beamline 13A at the Taiwan Photon Source. Journal
of Applied Crystallography 2022, 55 (2), 340-352.
36. Bernadó, P.; Svergun, D. I., Structural analysis of intrinsically disordered proteins by smallangle X-ray scattering. Molecular BioSystems 2012, 8 (1), 151-167.
37. Ouedraogo, R.; Daumas, A.; Capo, C.; Mege, J.-L.; Textoris, J., Whole-cell MALDI-TOF Mass
Spectrometry is an Accurate and Rapid Method to Analyze Different Modes of Macrophage
Activation. Journal of visualized experiments : JoVE 2013, 82.
38. Lebowitz, J.; Lewis, M. S.; Schuck, P., Modern analytical ultracentrifugation in protein
science: A tutorial review. Protein Science 2002, 11 (9), 2067-2079.
39. Cole, J. L.; Lary, J. W.; T, P. M.; Laue, T. M., Analytical ultracentrifugation: sedimentation
velocity and sedimentation equilibrium. Methods Cell Biol 2008, 84, 143-79.
40. Edwards, G. B.; Muthurajan, U. M.; Bowerman, S.; Luger, K., Analytical Ultracentrifugation
(AUC): An Overview of the Application of Fluorescence and Absorbance AUC to the Study of
Biological Macromolecules. Current Protocols in Molecular Biology 2020, 133 (1), e131.
41. Wohlleben, W., Validity range of centrifuges for the regulation of nanomaterials: from
classification to as-tested coronas. J Nanopart Res 2012, 14 (12), 1300.
42. Dessau, M. A.; Modis, Y., Protein crystallization for X-ray crystallography. J Vis Exp 2011,
(47).
43. Callaway, E., The revolution will not be crystallized: a new method sweeps through structural
biology. Nature 2015, 525 (7568), 172-174.
44. Murzin, A. G., OB(oligonucleotide/oligosaccharide binding)-fold: common structural and
functional solution for non-homologous sequences. Embo j 1993, 12 (3), 861-7.
45. Connell, T. D.; Holmes, R. K., Mutational analysis of the ganglioside-binding activity of the
type II Escherichia coli heat-labile enterotoxin LT-IIb. Mol Microbiol 1995, 16 (1), 21-31.
46. Connell, T. D.; Holmes, R. K., Molecular genetic analysis of ganglioside GD1b-binding activity
of Escherichia coli type IIa heat-labile enterotoxin by use of random and site-directed mutagenesis.
Infect Immun 1992, 60 (1), 63-70.
47. Bell, C. E.; Eisenberg, D., Crystal structure of diphtheria toxin bound to nicotinamide adenine
dinucleotide. Biochemistry 1996, 35 (4), 1137-49.
48. Dafforn, T. R., So how do you know you have a macromolecular complex? Acta Crystallogr D
Biol Crystallogr 2007, 63 (Pt 1), 17-25.
49. Korasick, D. A.; Tanner, J. J., Determination of protein oligomeric structure from small-angle
X-ray scattering. Protein Science 2018, 27 (4), 814-824.
50. Petoukhov, M. V.; Svergun, D. I., Global Rigid Body Modeling of Macromolecular Complexes
against Small-Angle Scattering Data. Biophysical Journal 2005, 89 (2), 1237-1250.
51. Svergun, D.; Barberato, C.; Koch, M. H. J., CRYSOL - a Program to Evaluate X-ray Solution
Scattering of Biological Macromolecules from Atomic Coordinates. Journal of Applied
Crystallography 1995, 28 (6), 768-773.