簡易檢索 / 詳目顯示

研究生: 呂杰璉
Lu, Chieh-Lien
論文名稱: 順向多壁碳管之電場感應研究
Use of aligned carbon nanotubes as electric field sensors
指導教授: 徐文光
Hsu, Wen-Kuang
口試委員: 徐文光
魏碧玉
黃淑娟
郭信良
許景棟
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 57
中文關鍵詞: Carbon nanotubesElectric FieldSimulation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇文章是利用往同一方向生長並有序排列的多壁奈米碳管製成電場感測器,並且利用模擬軟體探討其運作的機制。實驗中發現碳管受電場影響後電阻值會立刻產生變化,並且產生大幅度的震盪。在低溫真空環境下碳管產生的電阻變化可以達到最大化。由於本實驗的運作原理跟奈米碳管傾向叢聚(aggregate)有關,所以本篇亦針對碳管的叢聚行為做探討。
    第一章 簡短地敘述論文背景與動機
    第二章 簡述奈米碳管的基本性質、現今電場感測器的優缺點,以及理論模擬之發展與原理
    第三章 介紹實驗儀器、實驗流程與儀器裝置的設定
    第四章 探討碳管受電場影響後的電性變化,發現當0.06mV/Å的電場做用在碳管上時,會使碳管產生極化,讓整個試片的電阻產生變化;並以實驗證明之。同時也討論在真空、低溫下的電阻變化。最後,我們討論了碳管叢聚成一束碳管束的機制
    第五章 對整個實驗結果做一個總結


    Application of electric field in normal to aligned carbon nanotubes creates Coulomb forces at intertube junctions and tubes become closely packed. Packed structure facilitates intertube transfer of carriers and reduced resistance is found to scale with field strength. Aggregated nanotubes are therefore used as field sensors and sensitivity is evident by drastic fluctuations of resistance. Sensing mechanism is discussed and verified.
    Chapter 1 describes the background and motivation of the thesis
    Chapter 2 introduces the background of the carbon nanotubes, electric field sensors, and the simulation system.
    Chapter 3 describes experimental setups and characterization techniques.
    Chapter 4 discusses the sensing results of electric field by aligned carbon nanotubes and the aggregation behavior of the carbon nanotubes.
    Chapter 5 concludes the experimental results.

    Abstract..........................................................................................................................I 摘要...............................................................................................................................II 誌謝..............................................................................................................................III Contents.........................................................................................................................V Figure Captions...........................................................................................................VII Table List.......................................................................................................................X Chapter 1 Motivation.....................................................................................................1 Chapter 2 Introduction & Literature Review..................................................................3 2-1 Structure of Carbon nanotubes.........................................................................3 2-2 Mechanical properties of carbon nanotubes.....................................................7 2-3 Electrical properties of carbon nanotubes........................................................8 2-4 Syntheses of carbon nanotubes......................................................................13 2-5 Electric field sensing technology...................................................................17 2-6 Density Functional Theory and molecular dynamic simulations...................17 Chapter 3 Experimental Section...................................................................................19 3-1 Instrumental characterization.........................................................................19 3-1-1 Pyrolysis System.................................................................................19 3-1-2 Low Temperature Vacuum System.....................................................19 3-1-3 Electrical General Source Meter - Keithley 2400...............................19 3-1-4 Field Emission Scanning Electron Microscope (Joel, JSM-6500F)...19 3-1-5 Simulation Software - Materials Studio 4.2.......................................21 3-2 Sample preparations.......................................................................................22 3-2-1 Production of aligned MWCNTs........................................................22 3-2-2 Fabrication of MWCNT-sensors.........................................................22 3-3 Experimental Setups......................................................................................25 Chapter 4 Results and Discussion................................................................................26 4-1 CNT electron density and stress tensor..........................................................26 4-2 Resistance measurement of D1, D2, D3, and D4 devices under ambient condition...............................................................................................................29 4-3 Resistance measurement of D2 device in vacuum.........................................34 4-4 Use of aligned carbon nanotubes as electric field sensors.............................35 4-5 Aggregation behaviour of CNTs....................................................................38 Chapter 5 Conclusion...................................................................................................48 References....................................................................................................................49

    1. Dekker, C., Carbon Nanotubes as Molecular Quantum Wires. Physics Today, 1999. 52(5): p. 22-28.
    2. Ebbesen, T.W., et al., Electrical conductivity of individual carbon nanotubes. Nature, 1996. 382: p. 54-56.
    3. Farajian, A.A., et al., Electronic transport through bent carbon nanotubes: Nanoelectromechanical sensors and switches. Physical Review B, 2003. 67(20): p. 205423.
    4. Appenzeller, J., et al., Field-Modulated Carrier Transport in Carbon Nanotube Transistors. Physical Review Letters, 2002. 89(12): p. 126801.
    5. Li, H.-C., et al., Conductivity enhancement of carbon nanotube composites by electrolyte addition. Applied Physics Letters, 2008. 93(3): p. 033104-3.
    6. Baumgartner, G., et al., Hall effect and magnetoresistance of carbon nanotube films. Physical Review B, 1997. 55(11): p. 6704-6707.
    7. Lin, Y.-H., et al., Why aggregated carbon nanotubes exhibit low quantum efficiency. Physical Chemistry Chemical Physics, 2011. 13(15): p. 7149-7153.
    8. Dresselhaus, M.S., G. Dresselhaus, and P.C. Eklund, Science of Fullerenes and Carbon Nanotubes, 1996, Academic Press.
    9. Dresselhaus, M.S. and P.C. Eklund, Phonons in carbon nanotubes. Advances in physics, 2000. 49: p. 705.
    10. Iijima, S., Helical microtubules of graphitic carbon. Nature, 1991. 354: p. 56.
    11. Yakobson, B.I. and R.E. Smalley, Fullerene Nanotubes: C1,000,000 and Beyond. American Scientist, 1997. 85: p. 324.
    12. Ajayan, P.M. and S. Iijima, Smallest carbon nanotube. Nature, 1992. 358.
    13. Ebbesen, T.W. and P.M. Ajayan, Large-scale synthesis of carbon nanotubes. Nature, 1992. 358: p. 220.
    14. Charlier, J.-C. and J.-P. Michenaud, Energetics of multilayered carbon tubules. Physical Review Letters, 1993. 70: p. 1858.
    15. Kukovitsky, E.F., et al., Correlation between metal catalyst particle size and carbon nanotube growth. 2002. 355: p. 497.
    16. Kanzow, H., P. Bernier, and A. Ding, Lower limit for single-wall carbon nanotube diameters from hydrocarbons and fullerenes. Applied Physics A, 2002. 74: p. 411.
    17. Kim, L., et al., Diameter control of carbon nanotubes by changing the concentration of catalytic metal ion solutions. Carbon, 2005. 43: p. 1453.
    18. Choi, Y.C., et al., Effect of surface morphology of Ni thin film on the growth of aligned carbon nanotubes by microwave plasma-enhanced chemical vapor deposition. Journal of Applied Physics, 2000. 88: p. 4898.
    19. Iijima, S. and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature, 1993. 363: p. 603.
    20. Wang, N., et al., Materials science: Single-walled 4 Å carbon nanotube arrays. Nature, 2000. 408: p. 50.
    21. Yang, Q.-H., et al., Large-Diameter Single-Walled Carbon Nanotubes Synthesized by Chemical Vapor Deposition. Advanced Materials, 2003. 15: p. 792.
    22. Saito, Y. and T. Yoshikawa, Interlayer spacings in carbon nanotubes. Physical Review B, 1993. 48: p. 1907.
    23. Saito, Y., T. Yoshikawa, and M. Inagaki, Growth and structure of graphitic tubules and polyhedral particles in arc-discharge. Chemical Physics Letters, 1993. 204: p. 277.
    24. Kiang, C.-H., et al., Size Effects in Carbon Nanotubes. Physical Review Letters, 1998. 81: p. 1869.
    25. Coulson, C.A., Valence. 1952: Oxiford University Press, Oxford.
    26. Ruoff, R.S. and D.C. Lorents, Mechanical and thermal properties of carbon nanotubes. Carbon, 1995. 33: p. 925.
    27. Yakobson, B.I., C.J. Brabec, and J. Bernholc, Nanomechanics of Carbon Tubes: Instabilities beyond Linear Response. Physical Review Letters, 1996. 76: p. 2511.
    28. Lu, J.P., Elastic Properties of Carbon Nanotubes and Nanoropes. Physical Review Letters, 1997. 79: p. 1297.
    29. Krishnan, A., et al., Young's modulus of single -walled nanotubes. Physical Review B, 1998. 58: p. 14013.
    30. Walters, D.A., et al., Elastic strain of freely suspended single-wall carbon nanotube ropes. Applied Physics Letters, 1999. 74: p. 3803.
    31. Ozaki, T., Y. Iwasa, and T. Mitani, Stiffness of Single-Walled Carbon Nanotubes under Large Strain. Physical Review Letters, 2000. 84: p. 1712.
    32. Yu, M.-F., et al., Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load. Science, 2000. 287: p. 637.
    33. Li, C. and T.-W. Chou, Elastic properties of single-walled carbon nanotubes in transverse directions. Physical Review B, 2004. 69: p. 073401.
    34. Overney, G., W. Zhong, and D. Tománek, Structural Rigidity and Low Frequency Vibrational Modes of Long Carbon Tubules. Z. Phys. D, 1993. 27: p. 93.
    35. R.Saito and G.D.a.M.D, Physical Properties of Carbon Nanotubes, 1998, Imperial College Press
    36. Chopra, N.G., et al., Fully collapsed carbon nanotubes. Nature, 1995. 377(6545): p. 135-138.
    37. Iijima, S., et al., Structural flexibility of carbon nanotubes. The Journal of Chemical Physics, 1996. 104(5): p. 2089-2092.
    38. Garg, A., J. Han, and S.B. Sinnott, Interactions of Carbon-Nanotubule Proximal Probe Tips with Diamond and Graphene. Physical Review Letters, 1998. 81(11): p. 2260-2263.
    39. Poncharal, P., et al., Electrostatic Deflections and Electromechanical Resonances of Carbon Nanotubes. Science, 1999. 283(5407): p. 1513-1516.
    40. Srivastava, D., M. Menon, and K. Cho, Nanoplasticity of Single-Wall Carbon Nanotubes under Uniaxial Compression. Physical Review Letters, 1999. 83(15): p. 2973-2976.
    41. Hamada, N., S.-i. Sawada, and A. Oshiyama, New one-dimensional conductors: Graphitic microtubules. Physical Review Letters, 1992. 68(10): p. 1579-1581.
    42. Lu, X. and Z. Chen, Curved Pi-Conjugation, Aromaticity, and the Related Chemistry of Small Fullerenes (<C60) and Single-Walled Carbon Nanotubes. Chemical reviews, 2005. 105: p. 3643.
    43. Hsu, C.-T., Phone and adsorption properties of aggregated carbon nanotubes and novel productions for tubular graphite and individual graphenes. 2008: NTHU MSE Ph.D Thesis.
    44. Aplin, K.L. and R.G. Harrison, A computer-controlled Gerdien atmospheric ion counter. Review of Scientific Instruments, 2000. 71: p. 3037.
    45. Yamabe, T., K. Fukui, and K. Tanaka, The Science and Technology of Carbon Nanotubes, K. Tanaka, Editor 1999, Elsevier Science.
    46. Baughman, R.H., A.A. Zakhidov, and W.A.d. Heer, Carbon nanotubes-the route toward application. Science, 2002. 297: p. 787.
    47. Journet, C., et al., Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature, 1997. 388: p. 756.
    48. Rao, A.M., et al., Diameter-Selective Raman Scattering from Vibrational Modes in Carbon Nanotubes. Science, 1997. 275: p. 187.
    49. Cheng, H.M., et al., Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons. Chemical Physics Letters, 1998. 289: p. 602.
    50. Colomer, J.-F., et al., Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method. Chemical Physics Letters, 2000. 317: p. 83.
    51. Colomer, J.-F., et al., Characterization of single-wall carbon nanotubes produced by CCVD method. Chemical Physics Letters, 2001. 345: p. 11.
    52. Berger, C., et al., Ultrathin Epitaxial Graphite:  2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics. Journal of Physical Chemistry B, 2001. 108: p. 19912.
    53. Hafner, J.H., et al., Catalytic growth of single-wall carbon nanotubes from metal particles. Chemical Physics Letters, 1998. 296: p. 195.
    54. Kong, J., A.M. Cassell, and H. Dai, Chemical vapor deposition of methane for single-walled carbon nanotubes. Chemical Physics Letters, 1998. 292: p. 567.
    55. Tang, S., et al., Controlled growth of single-walled carbon nanotubes by catalytic decomposition of CH4 over Mo/Co/MgO catalysts. Chemical Physics Letters, 2001. 350: p. 19.
    56. KRÄTSCHMER, W., et al., Solid C60: a new form of carbon. Nature, 1990. 347: p. 354.
    57. Terranova, M.L., V. Sessa, and M. Rossi, The World of Carbon Nanotubes: An Overview of CVD Growth Methodologies. Chemical Vapor Deposition, 2006. 12: p. 315.
    58. Pan, Z.W., et al., Very long carbon nanotubes. Nature, 1998. 394: p. 631-632.
    59. Li, W.Z., et al., Large-Scale Synthesis of Aligned Carbon Nanotubes. Science, 1996. 274: p. 1701-1703.
    60. Andrews, R., et al., Continuous production of aligned carbon nanotubes: a step closer to commercial realization. Chemical Physics Letters, 1999. 303: p. 467-474.
    61. Bower, C., et al., Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition. Applied Physics Letters, 2000. 77(17): p. 2767-2769.
    62. Williams, E.R., The tripole structure of thunderstorms. Journal of Geophysical Research: Atmospheres, 1989. 94(D11): p. 13151-13167.
    63. Uma, G., et al., Ionospheric responses to two large geomagnetic storms over Japanese and Indian longitude sectors. Journal of Atmospheric and Solar-Terrestrial Physics, 2012. 74: p. 94-110.
    64. Koniger, F., et al., 'Free Line Sensing', a new method for soil moisture measurements using high-voltage power lines. Near Surface Geophysics, 2010. 8(2): p. 151-161.
    65. Chau, J.L., et al., Equatorial and Low Latitude Ionospheric Effects During Sudden Stratospheric Warming Events Ionospheric Effects During SSW Events. Space Science Reviews, 2012. 168(1-4): p. 385-417.
    66. Kashif, M., et al., Full Scale Modeling of an Antenna in Offshore Environment for Electromagnetic Enhanced Oil Recovery, in International Conference on Fundamental and Applied Sciences 2012, B. AriWahjoedi, R. Razali, and M. Narahari, Editors. 2012, Amer Inst Physics: Melville. p. 164-169.
    67. Perrin, E., et al., Study of Electric Field Radiated by Wifi Sources Inside an Aircraft-3D Computations and Real Tests. 2008 International Symposium on Electromagnetic Compatibility. 2008, New York: Ieee. 645-649.
    68. Novkovic, D., I. Vukanac, and Z. Milosevic, The mechanism of detection of air pollution by an ionization chamber. Isotopes in Environmental and Health Studies, 2000. 36(3): p. 241-254.
    69. Mitsui, T., et al., Development of Fiber-Optic Voltage Sensors and Magnetic-Field Sensors. Power Delivery, IEEE Transactions on, 1987. 2(1): p. 87-93.
    70. Rao, Y.J., et al., Electro-optic electric field sensor based on periodically poled LiNbO3. Electronics Letters, 1999. 35(7): p. 596-597.
    71. Santos, J.C., M.C. Taplamacioglu, and K. Hidaka, Pockels high-voltage measurement system. Power Delivery, IEEE Transactions on, 2000. 15(1): p. 8-13.
    72. Heisenberg, W., Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Zeitschrift für Physik, 1925. 33(1): p. 879-893.
    73. Hartree, D.R., The wave mechanics of an atom with a non-coulomb central field. Part I - Theory and Methods. Proc. Camb. Phil. Soc., 1928. 24: p. 89-110.
    74. Hohenberg, P. and W. Kohn, Inhomogeneous Electron Gas. Physical Review, 1964. 136(3B): p. B864-B871.
    75. Kohn, W., Variational Methods for Periodic Lattices. Physical Review, 1952. 87(3): p. 472-481.
    76. Kohn, W. and J.M. Luttinger, Quantum Theory of Electrical Transport Phenomena. Physical Review, 1957. 108(3): p. 590-611.
    77. Kohn, W., Theory of Bloch Electrons in a Magnetic Field: The Effective Hamiltonian. Physical Review, 1959. 115(6): p. 1460-1478.
    78. Kohn, W. and J.M. Luttinger, Ground-State Energy of a Many-Fermion System. Physical Review, 1960. 118(1): p. 41-45.
    79. Kohn, W., Y. Meir, and D.E. Makarov, van der Waals Energies in Density Functional Theory. Physical Review Letters, 1998. 80(19): p. 4153-4156.
    80. Kohn, W., Nobel Lecture: Electronic structure of matter—wave functions and density functionals. Reviews of Modern Physics, 1999. 71(5): p. 1253-1266.
    81. Kohn, W. and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 1965. 140(4A): p. A1133-A1138.
    82. Allen, M.P. and D.J. Tildesley, Computer Simulation of Liquids, 1987, Oxford Science Publications.
    83. Ding, J.-J., C.-L. Lu, and W.-K. Hsu, Capacitive carbon nanotube networks in polymer composites. Applied Physics Letters, 2011. 99: p. 033111.
    84. Sun, H., COMPASS:  An ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds. The Journal of Physical Chemistry B, 1998. 102(38): p. 7338-7364.
    85. Tersoff, J. and R.S. Ruoff, Structural Properties of a Carbon-Nanotube Crystal. Physical Review Letters, 1994. 73(5): p. 676-679.
    86. Monteverde, M. and M. Núñez-Regueiro, Pressure Control of Conducting Channels in Single-Wall Carbon Nanotube Networks. Physical Review Letters, 2005. 94(23): p. 235501.
    87. Syue, S.-H., et al., Increased strength of boron-doped carbon nanotube bundles produced by applying an electric field along their length. Carbon, 2009. 47(5): p. 1239-1243.
    88. Fischer, J.E., et al., Metallic resistivity in crystalline ropes of single-wall carbon nanotubes. Physical Review B, 1997. 55(8): p. R4921-R4924.
    89. Collins, P.G., et al., Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes. Science, 2000. 287(5459): p. 1801-1804.
    90. Ramanayaka, A.N., R.G. Mani, and W. Wegscheider, Microwave-induced electron heating in the regime of radiation-induced magnetoresistance oscillations. Physical Review B, 2011. 83(16): p. 165303.
    91. Li, Y.-F., et al., Electromagnetic modulation of carbon nanotube wetting. Journal of Materials Chemistry, 2009. 19(41): p. 7694-7697.
    92. Girifalco, L.A., M. Hodak, and R.S. Lee, Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Physical Review B, 2000. 62(19): p. 13104-13110.
    93. Studio, M., Atom-based cutoffs, Help File 4.2, Editor.
    94. Syue, S.-H., et al., Internanotube friction. Applied Physics Letters, 2006. 89(16): p. 163115-3.
    95. Cheng, T.-W. and W.-K. Hsu, Winding of single-walled carbon nanotube ropes: An effective load transfer. Applied Physics Letters, 2007. 90(12): p. 123102-3.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE