簡易檢索 / 詳目顯示

研究生: 姚佑承
論文名稱: 氮化鎵電制吸收調變器可行性之研究
Investigation of the Feasibility of GaN Based Electro-absorption Modulator
指導教授: 蕭高智
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2005
畢業學年度: 94
語文別: 中文
論文頁數: 52
中文關鍵詞: 氮化鎵調變器
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前,有越來越多的應用是以氮化鎵材料作為光電元件的趨勢,藍光塑膠光纖通訊是其中的一種可能應用。本實驗主要是研究以氮化銦鎵(InGaN)╱氮化鎵(GaN)為材料且吸收波長為400nm左右的電制吸收調變器(EAM)。在設計方面,因為未來會把電吸收調變器整合到氮化鎵(GaN)的異質接面雙載子電晶體(HBT)成為單晶片,所以會有許多的限制。初步的設計上,我們將P型材料的上層加入ㄧ層4nm N-type穿隧接面 (Tunnel junction),以便未來在設計時,將該層加厚就可以變成n-p-n異質接面雙載子電晶體。在製程上,我們已經確定可行的製程步驟及參數。量測方面,由電壓-電流關係曲線(I-V curve)可驗證磊晶材料的特性;在光電流頻譜上,由於目前只有405nm的波長雷射光源,所以只得到單一波長的光電流對電壓響應,驗證了電吸收調變器是可行的。


    Recently, there are more and more applications based on GaN related optoelectronics and plastic fiber communication happens to be one of the potentials. In this study, InGaN/GaN material was used for the EAM and the absorption edge is about 400nm. Our design is restricted by the consideration of future integration between GaN based Electroabsorption modulator (EAM) and HBTs on a single chip. On top of the p layer, a 4 nm n-type thin tunneling junction is added to improve the p contact. If we increase the thickness of the n-type tunneling layer, the structure could be also shared for npn HBTs. During our study, the processing steps and parameters have been refined and identified. The IV measurement has proved that the EAM does exist a p-n junction. Since there is only a fix wavelength 405nm laser source available, the photocurrent measurement was done only at 405nm and the result showed that the fabricated EAM is capable of modulating.

    中文摘要 i Abstract ii 致謝 iii 目錄 iv 圖表目錄 vi 第一章 簡介 1 第一節 前言 1 第二節 論文架構 2 第二章 氮化鎵電制吸收調變器的原理 5 第一節 光的吸收原理 5 第二節 量子侷限史塔克效應(Quantum Confined Stark Effect : QCSE) 8 第三節 壓電效應 13 第三章 元件設計與模擬 17 第一節 元件設計 17 第二節 元件設計與模擬 19 第四章 元件製程 24 第一節 製程概說與示意圖 24 第二節 詳細製程步驟 32 第五章 量測結果與討論 41 第六章 結論及未來研究方向 48 第一節 結論 48 第二節 未來研究方向 48 參考文獻 51

    [1] Michael Kneissl, et al., “Two-section InGaN multiple-quantum-well laser diode with integrated electro-absorption modulator”, Appl. Phy. Lett., vol. 80, No. 18, 3283-3285, 2002.
    [2] T. Reimann, et al., “Integration of heterostructure bipolar transistor and electro-absorption waveguide modulator based on a multifunctional layer design for 1.55μm”, 13th IPRM, May 2001
    [3] http://www.asahi-kasei.co.jp/pof/en/products/grade_t.html
    [4] D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys.Rev. B, vol. 32, pp. 1043–1060, 1985.
    [5] D. A. B.Miller, D. S.Chemla, T. C.Damen, A. C.Gossard, W.Wiegmann, T. H.Wood, and C. A.Burrus, “Band-edge electroabsorption in quantum well structures: The quantum-confined Stark effect”, Phys. Rev. Lett., vol. 53, pp. 2173, 1984.
    [6] Mitsuo Fukuda, “Optical semiconductor devices”, Wiley interscience publication, 1999.
    [7] Pallab Bhattacharya, “Semiconductor optoelectronic device 2nd”, Prentice Hall international, 1997.
    [8] Koichi WaKiTa, “Semiconductor Optical Modulator”, Kluwer Academic Publishers, 1998.
    [9] T. Takeuchi, C. Wetzel, H. Amano, and Isamu Akasaki, “Piezoelectric effect in GaInN/GaN heterostructure and quantum well structure”, department of electrical and electric engineering, Meijo University.
    [10] Tetsuya Takeuchi , et al., “Determination of piezoelectric field in strained GaInN quantum wells using the quantum-confined stark effetc”, Appl. Phys. Lett. Vol. 73, No. 12, September, 1998.
    [11] G. Martin, et al., “Valence-banddiscontinuities of wurtzite GaN AlN and InN heterojunctionsmeasured by x-ray photoemission spectroscopy”, Appl. Phys. Lett. 68,2541, 1996.
    [12] S. C Jain, M. Willander, and R. V. Overstraeten, “III-nitrides: Growth, characterization, and properties”, J. Appl. Phys, 87, 965, 2000.
    [13] T. C. Wen, S. J. Chang, L. W. Wu, Y. K. Su, W. C. Lai, C. H. Kuo, C. H. Chen, J. K. Sheu, and J. F. Chen, “InGaN/GaN tunnel-injection blue light emitting diode”, IEEE transactions on electron devices, Vol. 49, No. 6, June 2002.
    [14] S.-R. Jeon, Y. H. Song, H. J. Jang, K. S. Kim, G. M. Yang,S. W. Hwang, and S. J. Son, “Buried tunnel contact junctions in GaN-based light-emitting diodes”, phys. stat. sol. (a) 188, No. 1, 167–170, 2001.
    [15] PICS3D,感謝Crosslight公司提供試用版給本實驗室。
    [16] S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, “Hole compensation mechanism of P-type GaN films”, Jpn. J. Appl. Phys. 31, 1258, 1992.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE