簡易檢索 / 詳目顯示

研究生: 蔡敏娟
Min-Chuan Tsai
論文名稱: 具有個體差異的連續型與離散型重複捕取實驗之模擬分析
The Simulation Study on Continuous and Discrete Capture-Recapture Experiment with Heterogeneity
指導教授: 趙蓮菊 教授
Dr. Anne Chao
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2000
畢業學年度: 88
語文別: 中文
論文頁數: 49
中文關鍵詞: 個體異質性重複捕取實驗珈瑪 - 卜瓦松假設貝塔 - 二項式假設
外文關鍵詞: Heterogeneity, Capture-Recapture Experiment, Gamma - Poisson Assumption, Beta - Binomial Assumption
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討具有個體異質性之連續型與離散型
    重複捕取實驗下,針對封閉母體模式估計母體種類

    數。在珈瑪 - 卜瓦松假設下之連續型模式中,比較

    樣本涵蓋估計量、重複訊息估計量、最大概似估計

    量。針對貝塔 - 二項式假設下的離散型模式,比較

    摺刀法估計量與最大概似估計量。文中分別介紹各

    種估計量,並且以不同參數下的模擬方式分析各種

    估計量的表現,最後並有文獻上的實例探討。

    第一章 緒論 1

    第二章 連續型模式簡介、符號說明、共同假設 2

    2.1模式簡介………………………………………………………………2

    2.2符號說明………………………………………………………………2

    2.3共同假設………………………………………………………………3

    第三章 連續型模式的各種估計量 4

    3.1最大概似估計量與條件最大概似估計量……………………………4

    3.2重複訊息估計量與樣本涵蓋估計量…………………………………9

    第四章 連續型模式之模擬研究與分析 13

    4.1 模擬條件……………………………………………………………13

    4.2 模擬結果與討論……………………………………………………15

    第五章 連續型模式之實例分析 18

    第六章 離散型模式簡介、符號說明、共同假設 22

    6.1 模式簡介……………………………………………………………22

    6.2 符號簡介……………………………………………………………22

    6.3 共同假設……………………………………………………………22

    第七章 離散型模式的各種估計量 24

    7.1 摺刀法估計量………………………………………………………24

    7.2 最大概似估計量……………………………………………………25

    第八章 離散型模式之模擬研究與分析 29

    8.1 模擬條件……………………………………………………………29

    8.2 模擬結果討論………………………………………………………29

    第九章 實例分析 31

    附錄 33

    參考文獻 48


    [1] Becker,N.G. (1984). Estimating Population Size from Capture-Recapture Experiments in Continuous Time. Australian Journal of Statistics 26,1-7.
    [2] Buckland,S.T. (1991). Quantifying Precision of Mark-Recapture Estimates Using the Bootstrap and Related Methods. Biometrics 47,255-268.
    [3] Bulmer,M.G. (1974). On Fitting the Poisson Lognormal Distribution to Species-Abundance Data. Biometrics 30,101-110.
    [4] Bunge,J. and Gallant,A.F. . Empirical Bayes Estimation of the Number of Species. Preprint.
    [5] Burnham,K.P. and Overton,W.S. (1978). Estimation of the size of a closed population when capture probabilities vary among animals. Biometrika 65,625-633.
    [6] Chao,A. (1987). Estimating the Population Size for Capture-Recapture Data with Unequal Catchability. Biometrics 43,783-791.
    [7] Chao,A. (1999). A Note on Estimating the Number of Species under Poisson-Gamma Model. To be submitted.
    [8] Chao,A. and Lee,S-M. (1992). Estimating the Number of Classes via Sample Coverage. Journal of the American Statistical Association 87,210-217.
    [9] Chao,A.,Lee, S-M. and Jeng,S-L. (1992). Estimating Population Size for Capture-Recapture Data When Capture Probabilities Vary by Time and Individual Animal. Biometrics 48,201-216.
    [10] Chao,A.,Chu,W. and Hsu,C-H. (1997). Inference for Capture-Recapture Experiments When Both Time and Behavioral Response Affect Capture. Under Resivion , Biometrics.
    [11] Chao,A. and Tsay,P.K. (1998). A Sample Coverage Approach to Multiple-System Estimation with Application to Census Undercount. Journal of the American Statistical Association 93,283-293.
    [12] Dahiya,R.C. (1981). An Improved Method of Estimating an Integer-Parameter by Maximum Likelihood. The American Statistician 35,34-37.
    [13] Darroch,J.N. (1958). The Multiple Recapture Census I:Estimation of A Closed Population. Biometrika 45,343-359.
    [14] Darroch,J.N., Fienberg,S.E.,Glonek,F.V. and Junker,B.W. (1993). A Three-Sample Multiple-Recapture Approach to Census Population Estimation with Heterogeneous Catchability. Journal of the American Statistical Association 88, 1137-1148.
    [15] David,F.N.,Johnson,N.L. (1952). The Truncated Poisson. Biometrics 8,275-285.
    [16] Efron,B. and Thisted,R. (1976). Estimating the Number of Unseen Species:How Many Words did Shakespeare Know? Biometrika 63,435-447.
    [17] Efron,B. and Tibshirani,R.J. (1993). An Introduction to Bootstrap,Chapman and Hall , New York.
    [18] Fisher,R.A., Corbet,A.S. and Williams,C.B. (1943). The Relation Between the Number of Species and the Number of Individuals in a Random Sample of an Animal Population. Journal of Animal Ecology,12,42-58.
    [19] Lee,S-M. and Chao,A. (1994). Estimating Population Size via Sample Coverage for Closed Capture-Recapture Models. Biometrics 50,88-97.
    [20] Otis,D.L., Burnham,K.P., White,G.C. and Anderson,D.R. (1978). Statistical Inference from Capture Data on Closed Animal Populations. Willdlife Monographs 62,1-135.
    [21] Pollock,K.H. (1976). Building Models of Capture-Recapture Experiment. The Statistician 25,253-260.
    [22] Pollock,K.H. (1991). Modeling Capture,Recapture,and Removal Statistics for Estimation of Demographic Parameters for Fish and Wildlife Population:Past, Present,and Future. Journal of the American Statistical Association 86,225-238.
    [23] Sanathanan,L. (1972). Estimating the Size of a Multinomial Population. The Annals of Mathematical Statistics 43,142-152.
    [24] Sanathanan,L. (1977). Estimating the Size of a Truncated Sample. Journal of the American Statistical Association 72,669-672.
    [25] Seber,G.A.F. (1982). The Estimation of Animal Abundance,2nd Edition. London:Griffin.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE