簡易檢索 / 詳目顯示

研究生: 蔡雅雯
Tsai, Ya-Wen
論文名稱: 藉由動力學量測探究CMRP與ATRP混成系統之反應機理
Insight into the Mechanism of Hybridization of CMRP and ATRP via Kinetic Measurement
指導教授: 彭之皓
Peng, Chi-How
口試委員: 王潔
Wang, Jane
陳俊太
Chen, Jiun-Tai
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 68
中文關鍵詞: 活性自由基聚合反應嵌段共聚物鈷催化自由基聚合反應原子轉移自由基聚合反應反應機理
外文關鍵詞: Living radical polymerization, Block copolymer, Cobalt mediated radical polymerization, Atom transfer radical polymerization, Mechanism
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在先前文獻中,我們利用巨分子起始劑PVAc-Co(acac)2在鈷催化自由基聚合與原子轉移自由基聚合反應的混成系統中對甲基丙烯酸甲酯進行聚合反應。然而,這反應當中卻有許多因素尚未分析。在此,為了瞭解整個反應機制,我們量測了不同溫度下巨分子起始劑PVAc-Co(acac)2的自由基釋放速率,分別為60 °C、50 °C、40 °C與30 °C,其速率常數為5.18×10-2、7.33×10-3、4.99×10-3與8.00×10-4 s-1。此外,我們更透過阿瑞尼式方程式進一步求得巨分子起始劑PVAc-Co(acac)2鈷碳鍵的活化能為Ea= 90.6 kJ/mol。接著,我們利用巨分子起始劑PVAc-Co(acac)2與甲基丙烯酸甲酯在60 °C與40 °C下進行聚合反應,我們發現在60 °C下聚醋酸乙烯酯自由基會發生耦合終止反應,為了避免此現象,接下來的反應將在40 °C下進行。我們利用三種配位基分別為bpy、PMDETA及Me6TREN進行鏈伸長反應,其中以配位基PMDETA的結果最好,嵌段共聚物的PDI值為1.10。巨分子起始劑PVAc-Co(acac)2除了釋放自由基外,也會釋放出Co(acac)2,透過紫外-可見光光譜及質譜圖,我們發現配位基交換現象,Co(acac)2會與原子轉移自由基聚合反應的配位基產生Co(acac)2bpy、Co(acac)PMDETA與Co(acac)Me6TREN。基於配位基交換現象,我們也針對銅錯化合物與鈷調控劑的當量進行優化。最後,我們解釋了不同的因素對鈷催化自由基聚合與反向原子轉移自由基聚合反應之混成系統的影響。


    In our previous study, we used macro-initiator PVAc-Co(acac)2 as initiator to mediate radical polymerization in the system of hybridization of CMRP and ATRP. Although we proposed the mechanism, we didn’t know the influence of each factor. First, we tried to measure the releasing rate of PVAc-Co(acac)2 for the purpose of understanding the mechanism deeply. The dissociation rate of PVAc-Co(acac)2 was measured at 60 °C, 50 °C, 40 °C and 30 °C, respectively. The constant value of dissociation rate was 5.18×10-2、7.33×10-3、4.99×10-3 and 8.00×10-4 s-1, respectively. By Arrhenius equation, the activation energy of PVAc-Co(acac)2 was determined to be 90.6 kJ/mol. Free radical polymerization of MMA at 60 °C or 40 °C was performed to evaluate the effect from dissociation rate of PVAc-Co(acac)2. The reaction temperature was decreased from 60 °C to 40 °C in order to avoid the coupling termination of PVAc radical at 60 °C. The chain-extension reaction was performed with different ligands including bpy, PMDETA and Me6TREN. It can synthesize block copolymer with low PDI by CuBr2/PMDETA. Moreover, ligand exchange was found between Co(acac)2 and ATRP deactivators including CuBr2/bpy, CuBr2/PMDETA, and CuBr2/Me6TREN. As a result, the equivalent of ATRP deactivator to PVAc-Co(acac)2 was critical on conducting a successful ATRP/CMRP hybridization.

    摘要 I Abstract II 謝誌 III 目錄 IV 表目錄 VII 圖目錄 VIII 式目錄 XIV 第一章 緒論 1 1-1高分子聚合物簡介 1 1-2 自由基聚合反應的發展 2 1-2-1傳統自由基聚合反應 (Conventional radical polymerization) 2 1-2-2 活性聚合自由基反應 (Living radical polymerization) 3 1-3鈷催化自由基聚合反應 (Cobalt mediated radical polymerization, CMRP) 7 1-4原子轉移自由基聚合反應 (Atom transfer radical polymerization, ATRP) 10 1-4-1傳統原子轉移自由基聚合反應 10 1-4-2活化再生原子轉移自由基聚合反應 13 1-5 研究動機 17 第二章 實驗結果與討論 24 2-1巨分子起始劑的自由基釋放速率 24 2-2 巨分子起始劑在不同溫度下進行鏈伸長反應 32 2-3 配位基交換效應 37 2-4不同當量溴化銅與配位基對鈷金屬催化與原子轉移自由基聚合混成系統的影響 45 2-5 配位基效應 48 第三章 結論 51 第四章 實驗內容 52 4-1 實驗藥品 52 4-2 實驗儀器 52 4-2-1 核磁共振光譜儀 (Nuclear Magnetic Resonance, NMR) 52 4-2-2凝膠滲透層析儀 (Gel permeation chromatography, GPC) 53 4-2-3 紫外光/可見光光譜儀(UV-Vis spectroscopy) 53 4-2-4 X光單晶繞射儀 (X-ray Single Crystal Diffractometer) 53 4-2-5 高性能液相層析串聯質譜儀 (HPLC/MS) 53 4-3 實驗部分 54 4-3-1 利用Co(acac)2進行鈷催化自由基聚合反應合成醋酸乙烯酯之 54 巨分子起始劑(分子量約10000 g/mol) 54 4-3-2利用Co(acac)2進行鈷催化自由基聚合反應合成短鏈醋酸乙烯酯之起始劑(分子量約2000 g/mol) 54 4-3-3 利用TEMPO 自由基捕獲劑求得CoPVAc釋放速率 55 4-3-4 利用巨分子起始劑PVAc-Co(acac)2對甲基丙烯酸甲酯進行鏈轉移反應合成嵌段共聚物PVAc-b-PMMA 55 第五章 附錄 57 5-1光譜圖 57 5-2 X-Ray 晶體數據 62 5-3 參考文獻 66

    1. Staudinger, H., Berichte der deutschen chemischen Gesellschaft (A and B Series) 1920, 53, 1073-1085.
    2. Carothers, W. H., Chem. Rev. 1931, 8, 353-426.
    3. Ziegler, K., Angew. Chem.-Int. Edit. 1952, 64, 323-329.
    4. Natta, G.; Pino, P.; Corradini, P.; Danusso, F.; Mantica, E.; Mazzanti, G.; Moraglio, G., J. Am. Chem. Soc. 1955, 77, 1708-1710.
    5. Pecora, R., Phys. Today 1986, 39, 116-117.
    6. Dhib, R.; Al-Nidawy, N., Chem. Eng. Sci. 2002, 57, 2735-2746.
    7. Winkler, D. E., J. Polym. Sci. Pol. Chem. 1959, 35, 3-16.
    8. Abraham, R. J.; Melville, H. W.; Ovenall, D. W.; Whiffen, D. H., Transactions of the Faraday Society 1958, 54, 1133-1139.
    9. Zhang, L.; Wang, Y.; Wang, Y.; Sui, Y.; Yu, D., J. Appl. Polym. Sci. 2000, 78, 1873-1878.
    10. Szwarc, M., Nature 1956, 178, 1168-1169.
    11. Hadjichristidis, N.; Pitsikalis, M.; Pispas, S.; Iatrou, H., Chem. Rev. 2001, 101, 3747-3792.
    12. Crivello, J. V.; Lam, J. H. W., Macromolecules 1977, 10, 1307-1315.
    13. Dechy-Cabaret, O.; Martin-Vaca, B.; Bourissou, D., Chem. Rev. 2004, 104, 6147-6176.
    14. Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T., Macromolecules 1995, 28, 1721-1723.
    15. Wang, J.-S.; Matyjaszewski, K., J. Am. Chem. Soc. 1995, 117, 5614-5615.
    16. Percec, V.; Tirrell, D. A., J. Polym. Sci. Pol. Chem. 2000, 38, 1705-1705.
    17. Grubbs, R. B.; Grubbs, R. H., Macromolecules 2017, 50, 6979-6997.
    18. Hawker, C. J.; Barclay, G. G.; Orellana, A.; Dao, J.; Devonport, W., Macromolecules 1996, 29, 5245-5254.
    19. Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H., Macromolecules 1998, 31, 5559-5562.
    20. Matyjaszewski, K.; Spanswick, J., Mater. Today 2005, 8, 26-33.
    21. Allan, L. E. N.; Perry, M. R.; Shaver, M. P., Prog. Polym. Sci. 2012, 37, 127-156.
    22. Inui, T.; Yamanishi, K.; Sato, E.; Matsumoto, A., Macromolecules 2013, 46, 8111-8120.
    23. Peng, C.-H.; Scricco, J.; Li, S.; Fryd, M.; Wayland, B. B., Macromolecules 2008, 41, 2368-2373.
    24. Gridnev, A., J. Polym. Sci. Pol. Chem. 2000, 38, 1753-1766.
    25. Janowicz, A. H. U. S., 4694054, 1991.
    26. Wayland, B. B.; Poszmik, G.; Mukerjee, S. L.; Fryd, M., J. Am. Chem. Soc. 1994, 116, 7943-7944.
    27. Debuigne, A.; Caille, J.-R.; Jérôme, R., Angew. Chem.-Int. Edit. 2005, 44, 1101-1104.
    28. Kermagoret, A.; Debuigne, A.; Jérôme, C.; Detrembleur, C., Nat. Chem. 2014, 6, 179-187.
    29. Liao, C.-M.; Hsu, C.-C.; Wang, F.-S.; Wayland, B. B.; Peng, C.-H., Polym. Chem. 2013, 4, 3098-3104.
    30. Pintauer, T.; Matyjaszewski, K., Chem. Soc. Rev. 2008, 37, 1087-1097.
    31. David, G.; Boyer, C.; Tonnar, J.; Ameduri, B.; Lacroix-Desmazes, P.; Boutevin, B., Chem. Rev. 2006, 106, 3936-3962.
    32. Tang, W.; Kwak, Y.; Braunecker, W.; Tsarevsky, N. V.; Coote, M. L.; Matyjaszewski, K., J. Am. Chem. Soc. 2008, 130, 10702-10713.
    33. Tang, W.; Matyjaszewski, K., Macromolecules 2006, 39, 4953-4959.
    34. Grimaud, T.; Matyjaszewski, K., Macromolecules 1997, 30, 2216-2218.
    35. Gao, Z.; Tao, X.; Cui, Y.; Satoh, T.; Kakuchi, T.; Duan, Q., Polym. Chem. 2011, 2, 2590-2596.
    36. Jakubowski, W.; Min, K.; Matyjaszewski, K., Macromolecules 2006, 39, 39-45.
    37. Teodorescu, M.; Matyjaszewski*, K., Macromol. Rapid Commun. 2000, 21, 190-194.
    38. Horn, M.; Matyjaszewski, K., Macromolecules 2013, 46, 3350-3357.
    39. Seeliger, F.; Matyjaszewski, K., Macromolecules 2009, 42, 6050-6055.
    40. Morick, J.; Buback, M.; Matyjaszewski, K., Macromol. Chem. Phys. 2012, 213, 2287-2292.
    41. Gromada, J.; Matyjaszewski, K., Macromolecules 2001, 34, 7664-7671.
    42. Jakubowski, W.; Matyjaszewski, K., Angew. Chem.-Int. Edit. 2006, 45, 4482-4486.
    43. Min, K.; Gao, H.; Matyjaszewski, K., Macromolecules 2007, 40, 1789-1791.
    44. Williams, V. A.; Matyjaszewski, K., Macromolecules 2015, 48, 6457-6464.
    45. Williams, V. A.; Ribelli, T. G.; Chmielarz, P.; Park, S.; Matyjaszewski, K., J. Am. Chem. Soc. 2015, 137, 1428-1431.
    46. Kwak, Y.; Matyjaszewski, K., Polym. Int. 2009, 58, 242-247.
    47. Krys, P.; Ribelli, T. G.; Matyjaszewski, K.; Gennaro, A., Macromolecules 2016, 49, 2467-2476.
    48. Tang, X.; Alavi, S., Carbohydrate Polymers - CARBOHYD POLYM 2011, 85, 7-16.
    49. Guerre, M.; Wahidur Rahaman, S. M.; Améduri, B.; Poli, R.; Ladmiral, V., Polym. Chem. 2016, 7, 6918-6933.
    50. Lin, Y.-C.; Hsieh, Y.-L.; Lin, Y.-D.; Peng, C.-H., Macromolecules 2014, 47, 7362-7369.
    51. Debuigne, A.; Caille, J.-R.; Willet, N.; Jérôme, R., Macromolecules 2005, 38, 9488-9496.
    52. Nicolaÿ, R.; Kwak, Y.; Matyjaszewski, K., Chem. Commun. 2008, 5336-5338.
    53. Kermagoret, A.; Nakamura, Y.; Bourguignon, M.; Detrembleur, C.; Jérôme, C.; Yamago, S.; Debuigne, A., ACS Macro Lett. 2014, 3, 114-118.
    54. Chen, Y.-J.; Wu, B.-J.; Wang, F.-S.; Chi, M.-H.; Chen, J.-T.; Peng, C.-H., Macromolecules 2015, 48, 6832-6838.
    55. Debuigne, A.; Champouret, Y.; Jérôme, R.; Poli, R.; Detrembleur, C., Chem.-Eur. J. 2008, 14, 4046-4059.
    56. Shalhoub, G. M., J. Chem. Educ. 1980, 57, 525-526.
    57. Wang, F.-S.; Yang, T.-Y.; Hsu, C.-C.; Chen, Y.-J.; Li, M.-H.; Hsu, Y.-J.; Chuang, M.-C.; Peng, C.-H., Macromol. Chem. Phys. 2016, 217, 422-432.
    58. Martin, B. D.; Finke, R. G., J. Am. Chem. Soc. 1992, 114, 585-592.
    59. Nakamura, Y.; Yamago, S., Macromolecules 2015, 48, 6450-6456.
    60. Xu, M.-M.; Li, Y.; Zheng, L.-J.; Niu, Y.-Y.; Hou, H.-W., New J. Chem. 2016, 40, 6086-6092.
    61. Benabdallah, J.; Setifi, Z.; Setifi, F.; Boughzala, H.; Titi, A., Acta Cryst. E 2019, 75, 142-145.
    62. Li, Y.; Wayland, B. B., Macromol. Rapid Commun. 2003, 24, 307-310.
    63. Queffelec, J.; Gaynor, S. G.; Matyjaszewski, K., Macromolecules 2000, 33, 8629-8639.

    QR CODE