研究生: |
許嘉雯 |
---|---|
論文名稱: |
使用區域性順向基底偏壓的高效能靜態記憶體 High performance SRAM by block forward body bias (FBB) |
指導教授: | 張彌彰 |
口試委員: |
郭治群
馬席彬 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 69 |
中文關鍵詞: | 靜態隨機存取記憶體 、導線延遲 、順向基底偏壓 |
外文關鍵詞: | SRAM, interconnect delay, FBB |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
靜態隨機存取記憶(SRAM)在大多數現今的數位積體電路中提供快速的資料儲存與讀取的功能,因而對這晶片的效能來說,其存取的時間非常重要。然而,隨著製程技術的演進,金屬接線的寄生電阻電容增加,遠端單元的字元線(WL)信號因為阻容延遲而造成嚴重失真並影響到記憶體單元的讀取時間。而這導線的延遲在未來會亦趨嚴重。因此,在技術開發的同時,如何解決這個問題是很重要的。
在這篇論文中,提出了使用區域性順向基底偏壓的方法來克服導線延遲問題。這個方法跟一般的傾向於提高記憶體單元的讀取和寫入能力的偏壓輔助方法不同。我們使用順向基底偏壓來提升導通閘(PG)和下拉閘(PD)電晶體的效能,以減少讀取時間。然而,順向基底偏壓的副作用是待機漏電流的增加。因此,把記憶體陣列分區域,並在每個區域只提供於必要的順向基底偏壓,便可以權衡待機電流的增加與性能增益。
這個方法在這篇論文中採用28奈米256千位元的記憶體陣列來呈現,並證明了可以增加11%的性能增益,同時相對於整個陣列都使用順向基底偏壓時所增加的待機電流,可減少了70%以上。
Static Random Access Memories (SRAM) provide an fast data storage and access for most of today's digital IC's, and thus their access time is important for these IC’s performance. However, due to technology improvement the word-line (WL) pulse of the far-end cells is observed to be severely distorted due to large interconnect RC delay. And the interconnect is predicted to get worse in the future. Thus, it is important to solve this problem for technology development.
In this thesis, a block forward body bias method to overcome the interconnect delay issue is developed. This method is different from the general bias-based assist methods, which tend to improve the read and write margins. We use the forward body bias to improve the pass gate (PG) and pull down (PD) transistors of the far-end cells to reduce the read access time. A side effect of the forward body bias is the increase of standby current. Partition the SRAM columns into blocks and apply only necessary body bias to each block can trade-off the performance gain with standby current increase.
It is demonstrated using 28nm 256k SRAM that the SRAM performance can be improved by 11%, while the standby current increase is reduced by more than 70% compared to full SRAM forward body bias.
[1] Nikolic. B, et al., “Technology variability from a design perspective,” in Custom Integrated Circuit Conference (CICC), 2010, pp. 1-8.
[2] Yeap. G, “Smart mobile SoCs driving the semiconductor industry: Technology trend, challenges and opportunities” in IEEE International Electron Devices Meeting (IEDM), 2013, pp. 1.3.1-1.3.3.
[3] Taejoong Song, et al., “A 14nm FinFET 128Mb 6T SRAM with VMIN-enhancement techniques for low-power applications,” in IEEE International Solid-State Circuit Conference (ISSCC), 2014, pp. 232-233.
[4] Yen-Huei Chen, et al., “A 16nm 128Mb SRAM in high-κ metal-gate FinFET technology with write-assist circuitry for low-VMIN applications,” in IEEE International Solid-State Circuit Conference (ISSCC), 2014, pp. 238-239.
[5] Chang. J, et al., “A 20nm 112Mb SRAM in High-κ metal-gate with assist circuitry for low-leakage and low-VMIN applications,” in IEEE International Solid-State Circuit Conference (ISSCC), 2013, pp. 316-317.
[6] E. Seevinck, F. J. List, and J. Lohstroh, “Static-noise margin analysis of MOS SRAM cells,” IEEE J. Solid-State Circuits, vol. SSC-22, no. 5, pp. 748–754, Oct. 1987.
[7] H. Qin, Yu Cao, D. Markovic,A. Vladimirescu,J. Rabaey, “SRAM leakage suppression by minimizing standby supply voltage,” ISQED, 2004.
[8] H. Kaul, M. Anders, S. Mathew, S. Hsu, A. Agarwal, R. Krishnamurthy, and S. Borkar, "A 320mV 56μW 411GOPS/Watt ultra-low voltage motion estimation accelerator in 65nm CMOS," IEEE International Solid-State Circuits Conference, pp. 316-317, Feb. 2008.
[9] S. Mukhopadhyay, H. Mahmoodi, K. Roy, “Modeling of failure probability and statistical design of SRAM array for yield enhancement in nanoscaled CMOS,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 24, no. 12, pp.1859-1880, Dec. 2005.
[10] S. R. Nassif, “Modeling and analysis of manufacturing variations,” Custom Integrated Circuit Conference , 2001, pp. 223–228.
[11] C. Visweswariah, “Death, taxes and failing chips,” Design Automation Conference, 2003, pp. 343–347.
[12] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De,“Parameter variation and impact oncircuits and microarchitecture,” Design Automation Conference, 2003, pp. 338–342.
[13] D. Burnett, K. Erington, C. Subramanian, and K. Baker, “Implications of fundamental threshold voltage variations for high-density SRAM and logic circuits,” VLSI Technology, Jun. 1994, pp. 15–16.
[14] S. Mukhopadhyay, H. Mahmoodi, and K. Roy, “Modeling and estimation of failure probability due to parameter variation in nano-scale SRAMs for yield enhancement,” VLSI Circuit., Honolulu, HI, Jun. 2004, pp. 64–67.
[15] S. Mukhopadhyay, H. Mahmoodi, and K. Roy, “Statistical design and optimization of SRAM cell for yield enhancement,” Int. Conf. Computer Aided Design, Nov. 2004, pp. 10–13.
[16] A. Bansal, et al., “Yield Estimation of SRAM Circuits using “Virtual SRAM Fab,” in IEEE/ACM International Conference on ICCAD, 2009, pp. 631-636.
[17] Jiajing Wang ; A. Singhee, R.A. Rutenbar, B.H. Calhoun, “Statistical Modeling for the Minimum Standby Supply Voltage of a Full SRAM Array,” in Solid State Circuits Conference, 2007, pp. 400-403.
[18] B. Calhoun and A. Chandrakasan, “Static noise margin variation for sub-threshold SRAM in 65-nm CMOS”, in IEEE Journal of JSSC, vol. 41, No. 7, pp. 1673-1679, July 2006
[19] R.W. Mann, S. Nalam, Jiajing Wang ; B.H. Calhoun, “Limits of Bias Based Assist Methods in Nano-Scale 6T SRAM,” in International Symposium Quality Electronic Design (ISQED), 2010, pp. 1-8.
[20] O. Hirabayashi, et al., “A process-variation-tolerant dual-power-supply SRAM with 0.179μm2 Cell in 40nm CMOS using level-programmable wordline driver,” in IEEE International Solid-State Circuit Conference (ISSCC), 2009, pp. 458-459.
[21] D.P. Wang, et al., “A 45nm dual-port SRAM with write and read capability enhancement at low voltage,” in IEEE international SOC conference, 2007, pp. 211-214.
[22] S. Mukhopadhyay, H. Mahmoodi, K. Roy, “Reduction of Parametric Failures in Sub-100-nm SRAM Array Using Body Bias.” Computer-Aided Design of Integrated Circuits and Systems, 2008, pp 174-183.
[23] A. Bhavnagarwala, et al., “Fluctuation limits & scaling opportunities for CMOS SRAM cells,” in IEEE International Electron Device Meeting (IEDM), 2005, pp. 659-662.
[24] K. Zhang, et al., “A 3-GHz 70-mb SRAM in 65-nm CMOS technology with integrated column-based dynamic power supply.” in IEEE Journal of Solild-State Circuits (JSSC), 2005, pp. 146-151.
[25] V. Chandra, C. Pietrzyk, R. Aitken, “On the efficacy of write-assist techniques in low voltage nanoscale SRAMs;” Design, Automation & Test in Eurpose Conference & Exhibition, 2010, pp. 345-350.
[26] Karl. E, et al., “A 4.6 GHz 162 Mb SRAM Design in 22 nm Tri-Gate CMOS Technology With Integrated Read and Write Assist Circuitry,” IEEE Journal of Solid-State Circuits (JSSC), 2013, pp. 150-158.
[27] H. Pilo, et al., “An SRAM Design in 65nm and 45nm Technology Nodes Featuring Read and Write-Assist Circuits to Expand Operating Voltage,” VLSI Circuits, 2006, pp. 15-16.
[28] H.S.Yang, et al., “Scaling of 32nm low power SRAM with high-K metal gate,” in IEEE International Electron Device Meeting (IEDM), 2008, pp. 1-4.
[29] C.H. Kim, et al., “A forward body-biased low-leakage SRAM cache: device, circuit and architecture considerations,” IEEE Transactions on Very Large Scale Integration (VLSI) System, 2005, pp. 349-357.
[30] Ganapathy. S, et al., “Effectiveness of hybrid recovery techniques on parametric failures,” International Symposium on Quality Electronic Design (ISQDE), 2013, pp. 258-264.