簡易檢索 / 詳目顯示

研究生: 楊永瑞
Yong-Ruei Yang
論文名稱: 以表面聲波震盪電路為基礎之生化感測系統
Bio-chemical sensing system based on surface acoustic wave oscillator
指導教授: 饒達仁
Da-Jeng Yao
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 132
中文關鍵詞: 表面聲波元件表面聲波震盪器S參數高頻量測
外文關鍵詞: SAW device, SAW oscillator, S parameter, high frequency measurement
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微小化、仿生化是目前生化感測器之發展重點,表面聲波元件有高靈敏度、高Q值與高訊號/雜訊比,且易與IC製程整合等等的特性。因此,近年來許多學者除了將其運用於通訊系統外,也利用其優點發展為高靈敏度之生化感測器。並因其反應時間短且回復性佳,可用於即時偵測之感測器。為提高其吸附氣體之選擇性與靈敏度,選用高選擇性之高分子為吸附薄膜,且與高頻電路與量測設備結合,做為後端的監控與量測。本文以100MHz之表面聲波元件為基礎,外加回授放大電路構成震盪電路,利用此電路進行仿生電子鼻之量測,並於後端使用計頻器(universal counter)量測頻率訊號之變化。爲了使後端監控與訊號的量測可以更準確,利用GBIP介面卡與電腦作連結,並利用visual basic進行儀控與訊號擷取。
    經本文之理論與實驗驗證,基材為128° YX-LiNbO3所製作出之SAW感測元件,中心頻率(center frequency)為97.95MHz、插入損失(Insertion loss)約為-8.53dB,與sidelobe rejection約26dB。而震盪器操作頻率約為97.8MHz、週期為10.22 ns、Vp-p=3.212V,其基頻載波功率約為10.53 dBm。而利用本系統進行量測,搭配感測薄膜為Calix[6]arene、Fe(Ⅱ) protoporphyrin IX chloride與polyaniline nanofibers對胺類氣體有非常好之選擇性。


    Miniaturization and bionics are the key point to recent development of bio-chemical sensor. Acoustic surface wave device has great performance on high sensitivity, quality factor and signal/noise ratio. And it’s also easy to integrate with IC process. Therefore, many scholars not only use it in communication system but also in bio-chemical sensor. Because of high sensitivity, it was usually used as real time sensing system. In order to increase selectivity and sensitivity of system, polymers with high selectivity were chosen as sensing film. Finally, high frequency circuit, and measurable equipment were combined with it for signal processing. In this thesis, high frequency SAW device were chosen as sensing chips and external feedback amplifier circuit of wide bandwidth were combined with it to construct oscillator circuit. This circuit was used as bionic E-nose for sensing target molecular of gas, and output signals were measured by the frequency counter (Agilent 53131A). For precisely controlling, GBIP card was adopted to connect computer, and monitoring program (visual basic) was using to control the computer.
    According to the theory and experimental verification, 128° YX LiNbO3 with high K2 value was chosen as sensing substrate. Center frequency of SAW device was 97.95MHz, insertion loss was -8.53dB, and sidelobe rejection was 26dB. The operation frequency of oscillator was 97.8MHz, period was 10.22 ns, and voltage of peak to peak value was 3.212V. Finally, the carrier power of fundamental frequency was 10.53 dBm. The SAW oscillator sensing system using high sensitivity and selectivity polymers, such as p-tert-butylcalix[6]arene, Fe(Ⅱ) protoporphyrin IX chloride, polyaniline nanofibers, was good for sensing amine vapor.

    總目錄 摘要 i 英文摘要 ii 誌謝 iii 總目錄 iv 圖目錄 viii 表目錄 xii 第一章 概論 1 1.1 前言 1 1.2 文獻回顧 3 1.3 本文架構 8 第二章 表面聲波感測系統基本理論 9 2.1壓電理論 9 2.1.1 壓電材料的種類 9 2.1.2 壓電效應 10 2.1.3 晶體壓電之根源 11 2.2 表面聲波感測器原理 16 2.2.1 指叉換能器 17 2.2.2 表面波波速 18 2.2.3 機電耦合係數 18 2.2.4溫度影響係數 19 2.2.5 壓電基材之傳遞損失 20 2.3 表面聲波元件模型之建立 21 2.3.1 Delta-Function Model 22 2.3.2 Network theory of the transducer 25 2.4 表面聲波感測器之感測機制 30 2.4.1 聲波感測之量測機制 31 2.4.2 質量負載效應 32 2.5 震盪器設計理論 35 2.5.1 震盪器正回授分析法 35 2.5.2 震盪器偏壓電路設計 37 2.5.3 相位雜訊(phase noise) 37 2.6 Scattering parameter 40 第三章 量測方法與系統之建立 42 3.1 SAW元件之基材選擇 43 3.2 SAW元件之設計與模擬 45 3.3 SAW 元件之製作 54 3.4 元件之特性量測 60 3.5 表面聲波震盪器模擬與製作 64 3.5.1 偏壓電路設計模擬 66 3.5.2 主動元件埠之放大電路模擬 69 3.5.3被動元件埠表面聲波元件之模擬 72 3.5.4 震盪電路模擬 73 3.6 感測系統之建立 78 3.6.1 主動式量測系統 78 3.6.2 被動式量測系統 82 3.7 溫度量測系統 85 3.8 薄膜之製作方法 86 3.8.1 P-tert-butylcalix[6]arenas 86 3.8.2 氯高鐵血紅素(Fe(Ⅱ) protoporphyrin IX chloride, hemin) 88 3.8.3 奈米纖維狀之聚苯氨(Polyaniline nanofibers) 90 第四章 量測結果以及數據分析 92 4.1 SAW元件特性量測 92 4.2溫度對頻率之影響 96 4.3 震盪器之量測結果 98 4.4 化學薄膜之鑑定分析 101 4.4.1奈米纖維狀之聚苯胺(Polyaniline nanofibers)之SEM圖 101 4.5各種揮發性氣體量測 103 4.5.1 P-tert-butylcalix[6]arenes之氣體感測 104 4.5.2 氯高鐵血紅素(Hemin) 111 4.5.3奈米纖維狀之聚苯胺(Polyaniline nanofibers) 116 4.6 量測結果之討論與比較 121 第五章 結論及展望 126 5.1 結論 126 5.2 展望 128 參考文獻 129 圖目錄 圖1.1 表面波能量於壓電基材之分佈[6] 4 圖1.2 大小約為50nm之氧化鋁奈米孔洞[9] 5 圖2.1 壓電基材之壓電轉換效應 12 圖2.2 壓電晶體受應變變化圖 13 圖2.3 表面聲波感測器原理 17 圖2.4 指叉電極之結構圖 18 圖2.5 指叉電極上之靜電子分佈 22 圖2.6 多對輸入端與單對輸出端之IDTs 24 圖2.7 輸入端與輸出端之IDTs皆為多對之模型 25 圖2.8 指叉電極下之電場分佈模型 29 圖2.9 Crossed-field model三埠等效導納網路表示法 29 圖2.10 每單位體積之能量儲存 33 圖2.11 回授震盪電路 36 圖2.13 振盪器功率頻譜 39 圖2.14 S參數功率傳輸 41 圖3.1 仿生電子鼻之生化氣體量測系統 43 圖3.2 元件設計參數為N1=30、N2=1、中心頻率為99.8MHz之頻率響應圖 45 圖3.3元件參數為N1=10、N2=10、中心頻為99.8MHz之頻率響應圖 47 圖3.4 元件參數為N1=20、N2=20、中心頻為99.8MHz之頻率響應圖 47 圖3.5元件參數為N1=30、N2=30、中心頻為99.8MHz之頻率響應圖 48 圖3.6 元件參數為N1=40、N2=40、中心頻為99.8MHz之頻率響應圖 48 圖3.7 元件參數為N1=20、N2=20、中心頻為24.95MHz之頻率響應圖 49 圖3.8 中心頻率為 99.8MHz 之電導(Conductance)Ga(ω)模擬圖 50 圖3.9 中心頻率為 24.95MHz 之電導(Conductance)Ga(ω)模擬圖 50 圖3.10 中心頻率為 99.8MHz 之電導(Conductance)Ga(ω)模擬圖(考慮IDT metallization 之影響) 53 圖3.11 中心頻率為 24.95MHz 之電導(Conductance)Ga(ω)模擬圖(考慮IDT metallization 之影響) 53 圖3.12 (a)SAW 元件之光罩圖、(b)wafer波傳方向+x 55 圖3.13 光阻塗佈完畢之後的圖 56 圖3.14 顯影完成之後的圖 56 圖3.15 E-gun蒸鍍完畢之後的圖 57 圖3.16掀離完畢之後的圖 58 圖3.17 99.8MHz SAW元件之製作完成圖 58 圖3.18 99.8MHz SAW元件之製作完成圖(中間為金薄膜層) 59 圖3.19 24.95MHz SAW元件之製作完成圖 59 圖3.20 (a)開放式基本微帶線結構、(b)量測電路板微帶線之計算 62 圖3.21 元件量測PCB焊接圖 63 圖3.22 網路分析儀 HP 8714C 63 圖3.23 震盪器架構圖 64 圖3.24 主動電路放大器偏壓電路 67 圖3.25 不同電感值(電抗值)之反射損耗值S11與插入損耗值S21 68 圖3.26 電感值L為2.7uH之反射損耗值S11與揷入損耗值S21 68 圖3.27 實際偏壓電路量測之反射損耗S11與插入損耗S21 69 圖3.28 放大器ERA_4SM之S21參數模擬 69 圖3.29 ERA_4SM 與偏壓電路之結合 70 圖3.30 ERA_4SM 與偏壓電路結合之S21模擬結果 71 圖3.31 放大器電路佈局圖 71 圖3.32 放大器電路S21量測結果 72 圖3.33 表面聲波元件S參數模型 72 圖3.34 震盪迴路之open loop test 73 圖3.35 震盪器之放大迴路電路佈局圖 74 圖3.36 震盪器放大迴路實際製作出之電路圖 74 圖3.37 震盪器放大迴路電路S21模擬 75 圖3.38 震盪器放大迴路實際電路S21量測 75 圖3.39 以【圖3.23】為架構之震盪電路開迴路測試(a)電路模擬(b)實際電路測試架構 76 圖3.40 震盪電路開迴路模擬之S21參數 77 圖3.41 震盪電路開迴路電路量測之S21參數 77 圖3.42 主動式感測系統(a)主動式量測架構、(b)電腦監控與計頻器、(c)放大迴路與量測腔體 81 圖3.43 被動式感測系統 83 圖3.44 利用99.8MHz 被覆polyaniline nanofibers 所製作出之晶片的頻率響應圖 83 圖3.45 被動式與主動式量測系統之比較 84 圖3.46 TC-08介面之照片 85 圖3.47 CA[6]自組裝分子膜之結構 87 圖3.48 CA[6]自組裝分子膜 87 圖3.49 金屬紫質基本結構圖 89 圖3.50 氯高鐵血紅素(iron(Ⅱ) protoporphyrin IX chloride, hemin) 89 圖4.1 製作出頻率為97.95MHz之SAW元件頻率響應圖 94 圖4.2製作出頻率為97.95MHz之SAW元件相位響應圖 94 圖4.3 製作出頻率為24.58MHz之SAW元件頻率響應圖 95 圖4.4 製作出頻率為24.58MHz之SAW元件相位響應圖 95 圖4.5 表面聲波元件加熱配置圖 96 圖4.6 頻率對溫度之變化 97 圖4.7 利用計頻器量測震盪電路之頻率值 98 圖4.8 利用高頻示波器於Time domain所量出之震盪波形 99 圖4.9 利用頻譜分析儀量測震盪器之震盪功率 99 圖4.10 利用頻譜分析儀量測震盪器之高頻諧波頻譜 100 圖4.11 摻雜有鹽酸的聚苯胺奈米纖維 ( polyaniline nanofiber ) 102 圖4.12 感測晶片重複使用其最大頻率偏移量Δf之變化 106 圖4.13 同一測試晶片加熱80℃後最大頻率偏移量之變化 106 圖4.14 11-MUA/CA[6]自組裝薄膜對不同蒸氣分子感測結果 107 圖4.15 endo-calix complex 108 圖4.16 11-MUA/CA[6]自組裝薄膜對不同胺類之感測性 110 圖4.17 三種偵測胺類的分子結構 111 圖4.18 11-MUA/CA[6]感測器對丙胺之濃度曲線與偵測極限 111 圖4.19 晶片暴露於丙胺蒸氣1000ppmv下之反應圖(未加溫脫附) 113 圖4.20 晶片暴露於丙胺蒸氣1000ppmv下之反應圖(加溫脫附) 114 圖4.21 Hemin薄膜對不同蒸氣分子感測結果 114 圖4.22 Hemin對胺類氣體產生之鍵結 115 圖4.23 Hemin薄膜對不同胺類之感測性 115 圖4.24 Hemin感測晶片對丙胺之濃度曲線與偵測極限 116 圖4.25 polyaniline nanofibers之摻雜特性 116 圖4.26 polyaniline偵測機制[28, 32] 117 圖4.27 polyaniline nanofibers 對不同溶濟之反應圖 118 圖4.28 polyaniline低於1000ppmv 之三乙胺感測結果 119 圖4.29 polyaniline對三乙胺之濃度曲線 120 圖4.30 polyaniline對三乙胺不同濃度之Loss變化 120 圖4.31 2002年Chung Wang[33]所提出之感測系統反應圖 122 圖4.32 1996年Daniel [34]所提出之系統反應圖(a)暴露於不同有機溶劑、(b)暴露於胺類溶劑 123 圖4.33 1999年Roberto[35]提出不同之porphyrin薄膜感測結果 125 表目錄 表1.1 金屬化合物與其可反應之氣體[10] 6 表1.2 有害氣體與感測薄膜[10] 7 表1.3感測膜種類與基板材料[11] 7 表3.1 各類基板之材料參數與其應用[14] 44 表3.2 24.95MHz與99.8MHz之元件設計參數 44 表4.1 實驗所使用之有機溶液參數表 104 表4.2 偵測不同胺類樣品之基本性質 109

    參考文獻
    [1] J. W. Gardner, Micro sensors MEMS and smart devices: John Wiley and Sons, 2001.
    [2] L. Rayleigh, "On waves propagated along the plane surface of an elastic solid," Proc. London Math. Soc., vol. 17, pp. 4, 1885.
    [3] R. M. White, "Direct piezoelectric coupling to surface elastic waves," Appl. Phys. Lett., vol. 7, pp. 314-316, 1965.
    [4] J. J. Campbell, "A method for estimation estimation optical crystal cuts and propagation directions for excitation of piezoelectric surface waves," IEEE Trans. Son. Ultrason, vol. 15, 1968.
    [5] A. H. Fahmy, "Propagation of acoustic surface waves in multilayers:A matrix description," Appl. Phy. Lett., vol. 22, pp. 495-497, 1973.
    [6] B. Drafts, "Acoustic wave technology sensors," IEEE TRANSACTIONS ON MiCROWAVE THEORY AND TECHNIQUES, vol. 49, pp. 795-802, 2001.
    [7] M. Penza, "SAW NOx gas sensor using WO3 thin film sensitive coating," sensor and actuators B, vol. 41, pp. 31-36, 1997.
    [8] C.-Y. Shen, "The Sensing Properties of L-glutamic acid hydrochloride Coated on Surface Acoustic Wave Ammonia Gas Sensors," Proceedings of the 33rd Chemical Sensor Symposium, vol. 17, pp. 1PB15, 2001.
    [9] K.Varghese, "Ammonia detection using nanoporous alumina resistive and surface acoustic wave sensors," Sensor and Actuator B, vol. 94, pp. 27-35, 2003.
    [10] H. Meixner, "Metal oxide sensors," sensor and actuator B, vol. 33, pp. 198-202, 1996.
    [11] S. M. Sze, Semiconductor sensors: John Wiley & Sons, 1994.
    [12] 吳朗, 電子陶瓷/壓電: 全欣資訊, 1994.
    [13] 邱碧秀, 電子陶瓷材料: 徐氏基金會, 1988.
    [14] C. K. Campbell, Surface acoustic wave devices for mobile and wireless communications: Academic Press, 1998.
    [15] K.-y. Hashimoto, Surface Acoustic Wave Device in Telecommunications- Modeling and Simulation: Springer, 2000.
    [16] G. S. Kino, Acoustic waves: devices, imaging, and analog signal processing: Prentice-Hall, 1987.
    [17] B. D. Stephen, Acoustic wave sensors:theory, design, and physico-chemical applications: Academic Press, 1996.
    [18] A. Aashish, D.L.,James, R.,Narayan, "Dynamic behavior of ultra-thin polymer films deposited on the surface acoustical wave devices," Sensors and Actuators B, vol. 72, pp. 234-241, 1999.
    [19] M. Penza, "Gas sensing properties of Langmuir-blodgett polypyrrole film investigated by surface acoustic waves," IEEE Transactions on ultrasonics,ferroelectrics and frequency control, vol. 45, pp. 1125-1132, 1998.
    [20] 袁帝文 王岳華, 高頻通訊電路設計, 初版 ed: 高立圖書出版社, 1997.
    [21] W. A. Davis, Radio frequency circuit design: John Wiley& Sons, 2001.
    [22] D. Leenaerts, Circuit design for RF transceivers: Kluwer Academic Publishers, 2001.
    [23] R. Ludwing, RF circuit design: Theory and Application: Prentice Hall, 2000.
    [24] L. Eichinger, "Accurate design of Low-noise high frequency SAW oscillators," in Agilent EEs of EDA: Agilent technologies, 2005.
    [25] R. F. Schmitt, "Rapid design of SAW oscillator electronics for sensor application," Sensor and actuator B, vol. 76, pp. 80-85, 2001.
    [26] D. M. Pozar, Microwave engineering: John Wiley& Sons, 1998.
    [27] 李世鴻譯, 微波工程: 五南圖書出版社, 2002.
    [28] 蕭文修, "感測元件偵測胺類氣體及無線傳輸遠距監測周界空氣之研究," in 化學系: 國立清華大學, 2005.
    [29] 戴竹君, "表面聲波元件偵測胺類氣體及超臨界流體清洗光阻," in 化學系: 國立清華大學, 2005.
    [30] J. Huang, "A General Chemical Route to Polyaniline Nanofibers," J. AM. CHEM. SOC., vol. 126, pp. 851-855, 2004.
    [31] S. Bender, "Temperature Stabilized Silicon Based Surface Acoustic Wave Gas sensors for the Detection of Solvent Vapors," SPIE Proceedings, vol. 3539-16, pp. 123-130, 1998.
    [32] C. D. Gutsche, "Calixarenes. 20. The Interaction of Calixarenes and Amines," American Chemical Society, vol. 109, pp. 4314-4320, 1987.
    [33] H. C. Yang, "Molecular Interactions between Organized, Surface-Confined Monolayers and Vapor-Phase Probe Molecules. 8. Reactions between Acid-Terminated Self-Assembled Monolayers and Vapor-Phase Bases," American Chemical Society, vol. 12, pp. 726-735, 1996.
    [34] S. Virji, "Polyaniline Nanofiber Gas sensor:Examination of response Mechanisms," Nano letters, vol. 4, pp. 491-196, 2004.
    [35] C. Wang, "A piezoelectric quartz crystal sensor array self assembled calixarene bilayers for detection of volatile organic amine in gas," Talanta, vol. 57, pp. 1181-1188, 2002.
    [36] D. L. Dermody, "Interactions between Organized, Surface-Confined Monolayers and Vapor-Phase Probe Molecules. 11. Synthesis, Characterization, and Chemical Sensitivity of Self-Assembled Polydiacetylene/Calix[n]arene Bilayers," J. Am. Chem. Soc., vol. 118, pp. 11912-11917, 1996.
    [37] R. Paolesse, "Porphyrin thin flms coated quartz crystal microbalances prepared by electropolymerization technique," Thin Solid Films, vol. 354, pp. 245-250, 1999.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE