研究生: |
葉宜貞 Yeh,Yi-Chen |
---|---|
論文名稱: |
鐵磁性薄膜與線之磁區結構與電子傳輸特性之探討 A study of magnetic domain configuration and electric transport of ferromagnetic thin films and wires |
指導教授: |
呂助增
Lue,Juh-Tzeng |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2008 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 155 |
中文關鍵詞: | 鐵磁性薄膜 、磁區結構 、電子傳輸 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The physical properties of magnetic domain structure and electric transport of ferromagnetic thin films and wires were studied. A magnetic force microscopy (MFM) is used to examine the domain configuration of Ni, Co, and Ni81Fe19 thin films. According to the experimental and theoretical calculation, the period of the domain varies with the thickness of the ferromagnetic thin films. In addition, the domain configuration can be altered and modulated by the applied magnetic field, which influences the direction of the magnetization within the domain and domain wall. Moreover, the temperature dependence on surfaces resistance of ferromagnetic thin films and wires are measured by a four-point measuring method and a T-junction microstrip method, respectively, to evaluate the direct current (DC) and radio frequency (RF) resistivities arising from the domain wall scattering. We observe that the resistivity of the ferromagnetic thin films change manifestly as the current conducts from parallel (CIW) to perpendicular (CPW) to the domain walls. The DC resistivity of the current conducting parallel to domain walls (CIW) is significantly smaller than that of the perpendicular (CPW) case. Whereas indistinguishable changes in CIW and CPW conducitons are observed that as signals increase to microwave frequency where films were fabricated in T-junction microstrip. Furthermore, the temperature dependence on size effect of the ferromagnetic wires is also investigated. The results of the data fitting reveal the circumstance of surface diffusion and can be used to assume the mean free path near 0K.
本論文探討鐵磁性薄膜與線之磁區結構以及電子在此結構中之傳輸特性。本實驗利用磁力顯微儀來量測鎳、鈷以及鎳鐵薄膜之磁區結構。利用所探測之磁力影像以及理論計算來分別估計磁區及磁壁之寬度並予以比較。如所預期,磁區之寬度與薄膜厚度之平方根成線性關係。此外,亦利用外加磁場以改變磁區結構並從而探討外加磁場與磁區結構周期之關係。使磁區寬度達飽和之外加磁場會隨著鐵磁性薄膜厚度之增加而增加到一臨界值。
另外,利用四點量測及T型微帶線方法分別探討直流與射頻電流下與溫度變化之鐵磁性薄膜與線的表面磁阻與磁壁散射之關係。我們觀察到在直流電下當電流方向平行磁壁(CIW)與電流方向垂直磁壁(CPW)其電阻值之變化。由於磁壁散射效應使得當電流方向垂直磁壁時之電阻大於當電流方向平行磁壁時之電阻。但是,利用T型微帶線探討在射頻之下磁壁散射效應時,發現此兩種通過磁區之傳輸方向之導電率沒有太大的差異。
最後,不同寬度之鐵磁性線在溫度變化下之電阻量測可經由理論模型進一步分析。根據曲線擬合結果,可得知鐵磁性線之表面擴散情形以及可大約估計在接近絕對零度時之電子平均自由路徑。
chapter1:
[1] “http://www.tf.uni-kiel.de/matwis/amat/elmat_en/kap_4/backbone/r4_4_1.html”
[2] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, and F. Petroff, Phys. Rev. Lett. 61 (1988) 2472.
[3] G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39 (1989) 4828.
[4] A. Fert and I. A. Campbell, Phys. Rev. Lett. 21 (1968) 1190.
[5] J. Bamaś and A. Fert, Phys. Rev. Lett. 80 (1998) 1058.
[6] P. Grünberg, R.Schreiber, and Y. Pang, Phys. Rev. Lett. 57 (1986) 2442.
[7] J. Barnaś, A. Fuss, R. E. Camley, P. Grünberg, and W. Zinn, Phys. Rev. B 42 (1990) 8110.
[8] P. Grünberg, Phys. Today (2001) 31.
[9] L. Xing and Y.-C. Chang, Phys. Rev. B 48 (1993) 4156.
[10] C. Blaas, P. Weinberger, L. Szunyogh, P. M. Levy, and C. B. Sommers, Phys. Rev. B 60 (1999) 492.
[11] R. E. Camley and J. Barnaś, Phys. Rev. Lett. 63 (1989) 664.
[12] P. Zahn, I. Mertig, M. Richter, and H. Eschrig, Phys. Rev. Lett. 75 (1995) 2996.
[13] J. Chen and S. Hershfield, Phys. Rev. B 57 (1998) 1097.
[14] S. Tehrani, J. M. Slaughter, E. Chen, M. Durlam, J. Shi, and M. DeHerrera, IEEE Trans. Magn. 35 (1999) 2814.
[15] T. Suzuki, Y. Fukumoto, and N. Ishiwata, J. Appl. Phys. 101 (2007) 023906.
[16] J. S. Moodera and P. Leclair, Nature Mater. 2 (2003) 107.
[17] B. N. Engel, N. D. Rizzo, J. Janesky, J. M. Slaughter, R. Dave, and M. DeHerrera, IEEE Trans. Nanotech. 1 (2002) 32.
[18] I. Žutić, J. Fabian, and S. D. Sarma, Rev. Mod. Phys. 76 (2004) 323.
[19] S. D. Sarma, American Sci. 89 (2001) 516.
[20] I. L. Prejbeanu, L. D. Buda, U. Ebels, and K. Ounadjela, Appl. Phys. Lett. 77 (2000) 3066.
[21] C. T. Hsieh, J. Q. Liu, and J. T. Lue, Appl. Surf. Sci. 252 (2005) 1899.
[22] M. Lohndorf, A. Wadas, H. A. M. van den Berg, and R. Wiesendager, Appl. Phys. Lett. 68 (1996) 3635.
[23] H. S. Cho, C. Hou, M. Sun, and H. Fujiwara, J. Appl. Phys. 83 (1999) 5160.
[24] L. J. Heyderman, H, Niedoba, H. O. Gupta, and I. B. Puchalska, J. Magn. Magn. Mater. 96 (1991) 125.
[25] H. J. Mamin, D. Rugar, J. E. Stern, R. E. Fontana, Jr., and P. Kasiraj, Appl. Phys. Lett. 55 (1989) 318.
[26] C. Kittel, Phys. Rev. Lett. 70 (1946) 965.
[27] M. W. Muller, J. Appl. Phys. 38 (1967) 2413.
[28] X.-T. Tang, G.-C. Wang, and N. Shima, Phys. Rev. B 75 (2007) 134404.
[29] K. Yakushiji, K. Saito, S. Mitani, K. Takanashi, Y. K. Takahashi, and K. Hono, Appl. Phys. Lett. 88 (2006) 222504.
[30] S. Urazhdin, R. Loloee, W. P. Pratt, and Jr., Phys. Rev. B 71 (2005) 100401.
[31] M. Bolte, M. Steiner, C. Pels, M. Barthelme□, J. Kruse, U. Merkt, G. Meier, M. Holz, and D. Pfannkuche, Phys. Rev. B 72 (2005) 224436.
[32] G. S. D. Beach, C. Knutson, C. Nistor, M. Tsoi, and J. L. Erskine, Phys. Rev. Lett. 97 (2006) 057203.
[33] M. Hayashi, L. Thomas, C. Rettner, R. Moriya, X. Jiang, and S. S. P. Parkin, Phys. Rev. Lett. 97 (2006) 207205.
[34] Y. Ohsawa, IEEE Trans. Magn. 42 (2006) 2615.
[35] L. Berger, J. Appl. Phys. 49 (1978) 2156.
[36] G. G. Cabrera and L. M. Falicov, Phys. Status Solidi B 61 (1974) 539.
[37] P. M. Levy and S. Zhang, Phys. Rev. Lett. 79 (1997) 5110.
[38] M. Viret, D. Vignoles, D. Cole, J. M. D. Coey, W. Allen, D. S. Daniel, and J. F. Gregg, Phys. Rev. B 53 (1996) 8464.
[39] G. Tatara and H. Fukuyama, Phys. Rev. Lett. 78 (1997) 3773.
[40] A. Brataas, G. Tatara, and G. E. W. Bauer, Phys. Rev. B 60 (1999) 3406.
[41] J. F. Gregg, W. Allen, K. Ounadjela, M. Viret, M. Hehn, S. M. Thompson, and J. M. D. Coey, Phys. Rev. Lett. 77 (1996) 1580.
[42] A. D. Kent, J. Yu, U. Rüdiger, and S. S. P Parkin, J. Phys.: Condens. Matter 13 (2001) R461.
[43] D. S. Snowden. J. G. Checkelsky, S. S. Harberger, N. P, Stern, J. C. Eckert, and P. D. Sparks, IEEE Trans. Magn. 40 (2004) 2242.
[44] L. Klein, Y. Kats, A. F. Marshall, J. W. Reiner, T. H. Geballe, M. R. Beasley, and A. Kapitulnik, Phys. Rev. Lett. 84 (2000) 6090.
[45] D. Buntinx, S. Brems, A. Volodin, K. Temst, and C. V. Haesendonck, Phys. Rev. Lett. 94 (2005) 017204.
[46] R. Danneau, P. Warin, J. P. Attané, I. Petej, C. Beigné, C. Fermin, O. Klein, A. Marty, F. Ott, Y. Samson, and M. Viret, Phys. Rev. Lett. 88 (2002) 157201.
[47] M. Hehn, S. Padovani, K. Ounadjela and J. P. Bucher, Phys. Rev. B 54 (1996) 3428.
[48] M. Demand, S. Padovani, M. Hehn, K. Ounadjela, J. P. Bucher, J. MAgn. Magn. Mater. 247 (2002) 147.
[49] J. B. Kim, Y. P. Lee, K. S. Ryu, S. C. Shin, H. Akinaga, and K. W. Kim, IEEE Trans. Magn. 42 (2006) 3249.
[50] M. A. Marioni, N. Pilet, T. V. Ashworth, R. C. O’Handley, and H. J. Hug, Phys. Rev. Lett. 97 (2006) 027201.
[51] A. Pérez Junquera, J. I. Martín, M. Vélez, J. M. Alameda, and J. L. Vicent, Nanotech. 14 (2003) 294.
[52] J. D. Burton, R. F. Sabirianov, S. S. Jaswal, and E. Y. Tsymbal, Phys. Rev. Lett. 97 (2006) 077204.
[53] D. Chiba, M. Yamanouchi, F. Matsukura, E. Dietl, and H. Ohno, Phys. Rev. Lett. 96 (2006) 096602.
[54] X. Zou and G. Xiao, Phys. Rev. B 77 (2008) 054417.
chapter 2
[1] B. D. Cullity, “Introduction to Magnetic Materials”, (Addison-Wesley, 1972) p.119, p287-292, p300-302.
[2] David Jiles, “Introduction to Magnetism and Magnetic Materials”, (Chapman & Hall, 1991) p.32-33, p.109-110.
[3] Stephen Blundell, “Magnetism in Condensed Matter”, (Oxford, 2001) p.74-75, p.85-87.
[4] Nicola A. Spaldin, “Magnetic Materials: Fundamentals and device applications”, (Cambridge, 2003) p.14-16, p.46-48.
[5] A. D. Kent, J. Yu, U. Rüdiger and S. S. P. Parkin, J. Phys.: Condens. Matter 13 (2001) R461-R488.
[6] U. Rüdiger, J. Yu, L. Thomas, S. S. P. Parkin and A. D. Kent, Phys. Rev. B 59 (1999) 11914.
[7] J. F. Gregg, W. Allen, K. Ounadjela, M. Viret, M. Hehn, S. M. Thompson and J. M. D. Coey, Phys. Rev. Lett. 77 (1996) 1580.
[8] Peter M. Levy and S. Zhang, Phys. Rev. Lett. 79 (1997) 5110.
[9] C. R. Tellier and A. J. Tosser, “Size Effects in Thin Films”, (Elsevier, 1982) Chap. 1.
[10] E. H. Sondheimer, Phys. Rev. 80 (1950) 401.
[11] E. H. Sondheimer, Adv. In Phys. 1 (1952) 1.
[12] A. F. Mayadas and M. Shatzkes, Phys. Rev. B 1 (1970) 1382.
[13] S. Y. Liao, “Microwave Devices and Circuits”, (Prentice-Hall, 1990) p. 61-64.
[14] P. A. Rizzi, “Microwave Engineering Passive Circuits”, (Prentice Hall, 1988) p. 57-60.
[15] D. K. Cheng, “Field and Wave Electromagnetics”, (Addison Wesley, 1989) p. 427-461.
[16] H.A. Wheeler, “Transmission line properties of parallel strips separated by a dielectric sheet”, IEEE Trans. Microwave Theory Tech. 13 (1965) 172-185.
[17] H.A. Wheeler, “Transmission line properties of a strip on a dielectric sheet on a plane”, IEEE Trans. Microwave Theory Tech. 25 (1977) 631-647.
[18] W.J. Getsinger, “Microstrip dispersion model”, IEEE Trans. Microwave Theory Tech. 21 (1973) 34-39.
[19] M. Kobayashi, “Important role of inflection frequency in the disperse properties of microstrip line”, IEEE Trans. Microwave Theory Tech. 30 (1982) 2057-2059.
[20] R.A. Pucel, et al., “Losses in microstrip”, IEEE Trans. Microwave Theory Tech. 16 (1968), p. 342-350.
[21] T.C. Edwards, “Foundations for Microstrip Circuit Design”, (John Wiley&sons, New York 1983).
[22] J.R. James and A. Henderson, “High frequency behavior of microstrip open-circuit termination,” IEE Journal on Microwaves, Optics and Acoustics 3 (1979) 205-218.
[23] A. Gopinath, "Maximum Q-factor of microstrip resonator", IEEE Trans. Microwave Theory Tech. 29 (1981) 128-131.
[24] S. Y. Liao, “Microwave Devices and Circuits”,. (Prentice-Hall, 1990)p. 477-482.
[25] J. D. Welch and H. J. Pratt, “Losses in microstrip transmission systems for integrated microwave circuits,” NEREM Rec. 8 (1966) 100-101.
[26] R. A. Pucel, D. J. Masse, and C. P. Hartwig, Correction to “Losses in microstrip,” IEEE Trans. Microwave Theory Tech. 16 (1968) 1064.
[27] J. D. Cockcroft, “Skin effect in rectangular conductors at high frequencies”, Proc. Roy. Soc. 122 (1929) 533–542.
[28] M. Caulton, J. J. Hughes, and H. Sobol, “Measurements on the properties of microstrip transmission lines for microwave integrated circuits”, RCA Rev. 27 (1966) 377–391.
[29] G. D. Vendelin, “High-dielectric substrate for microwave hybrid integrated circuitry”, IEEE Trans. Microwave Theory Tech. 15 (1967) 750-752.
[30] J. Carroll, M. Li, and Chang, "New technique to measure transmission line attenuation", IEEE Trans. Microwave Theory Tech. 43 (1995) 219-222.
[31] E.L.Ginzton, “Microwave Measurements”, (MacGraw-Hill, New York, 1957). Ch.9.
chapter 3
[1] L. F. Thompson, C. G. Willson, and M. J. Bowden, “Introduction to Microlithography,” (ACS, Washington, 1983) Chap. 2.
[2] R. Newman, “Fine line lithography,” (North Holland, New York, 1980) Chap. 4.
[3] http://www.purdue.edu/REM/rs/sem.htm
[4] Dror Sarid, “Scanning Force Microscopy,” (Oxford, New York, 1991) Chap. 12.
[5] “SPA300HV Manuals,” (Seiko Instruments Inc.).
[6] Ching-Wen Huang, “A study of Magnetic domains structure of Fe-Ni alloy thin films by magnetic force microscopy,” (2007) Chap. 2.
[7] “HP 8719D/8720D/8722D Network Analyzer,” (Hewlett Packard).
chapter 4
[1] C. T. Hsieh, J. Q. Liu, and J. T. Lue, Appl. Surf. Sci. 252 (2005) 1899.
[2] O. Portmann, A. Vaterlaus, and D. Pescia, Nature 422 (2003) 701.
[3] N. Pilet, T. V. Ashworth, M.A. Marioni, H. J. Hug, K. Zhang, and K. P. Lieb, J. Magn. Magn. Mater. 316 (2007) e583.
[4] M. Demand, S. Padovani, M. Hehn, K. Ounadjela, and J. P. Bucher, J. Magn. Magn. Mater. 247 (2002) 147.
[5] M. Hehn, S. Padovani, K. Ounadjela, and J. P. Bucher, Phys. Rev. B 54 (1996) 3428.
[6] M. A. Marioni, N. Pilet, T. V. Ashworth, R. C. O’Handley, and H. J. Hug, Phys. Rev. Lett. 97 (2006) 027201.
[7] R. Allenspach, M. Stampanoni, and A. Bischof, Phys. Rev. Lett. 65 (1990) 3344.
[8] M. Speckmann, H. P. Oepen, and H. Ibach, Phys. Rev. Lett. 75 (1995) 2035.
[9] M. Dreyer, M. Kleiber, A. Wadas, and R. Wiesendanger, Phys. Rev. B 59 (1999) 4273.
[10] P. Ohresser, J. Shen, J. Barthel, M. Zheng, Ch. V. Mohan, M. Klaua, and J. Kirschner, Phys. Rev. B 59 (1999) 3696.
[11] M.F. Chioncel, H. S. Nagaraja, F. Rossignol, and P. W. Haycock, J Magn. Magn. Mater. 313 (2007) 135.
[12] M. R. Scheinfein, J. Unguris, R. J. Celotta, and D. T. Pierce, Phys. Rev. Lett. 63 (1989) 668.
[13] H. P. Oepen and J. Kirshner, Phys. Rev. Lett. 62 (1989) 819.
[14] P. Castrucci, R. Gunnella, R. Bernardini, P. Falcioni, and M. De Crescenzi, Phys. Rev. B 65 (2002) 235435.
[15] A. Asenjo, D. Garcia, J. M. Garcia, C. Prados, and M. Vázquez, Phys. Rev. B 62 (2000) 6538.
[16] R. Bručas, H. Hafermann, M. I. Katsnelson, I. L. Soroka, O. Eriksson, and B. Hjörvarsson, Phys. Rev. B 69 (2004) 064411.
[17] G. Ausanio, V. Iannotti, L. Lanotte, M. Carbucicchio, and M. Rateo, J. Magn. Magn. Mater. 226-230 (2001) 1740.
[18] O. Donzelli, D. Palmeri, L. Musa, F. Casoli, F. Albertini, L. Pareti, and G. Turilli, J. Appl. Phys. 93 (2003) 9908.
[19] R. Naik, S. Hameed, P. Talagala, and L. E. Wenger, J. Appl. Phys. 91 (2002) 7550.
[20] U. Rüdiger, J. Yu, L. Thomas, S.S.P. Parkin, and A. D. Kent, Phys. Rev. B 59 (1999) 11914.
[21] U. Ebels, L. Buda, K. Ounadjela, and P. E. Wigen, Phys. Rev. B 63 (2001) 174437.
[22] N. Vernier, D. A. Allwood, D. Atkinson, M. D. Cooke, and R. P. Cowburn, Europhys Lett. 65 (2004) 526.
[23] E. Saitoh, H. Miyajima, T. Yamaoka, and G. Tatara, Nature 432 (2004) 203.
[24] M. Fukuda, M. Yamanouchi, F. Matsukura, and H. Ohno, Appl. Phys. Lett. 91 (2007) 052503.
[25] M. Hayashi, L. Thomas, R. Moriya, C. Rettner, and S. S. P. Parkin, Science 320 (2008) 209.
[26] H. Maekawa, T. Nozaki, S. Kasai, M. Mizuguchi, M. Shiraishi, T. Ono, and Y. Suzuki, Phys. Stat. Sol. (a) 204 (2007) 3987.
[27] M. Straub, R. Vollmer, and J. Kirschner, Phys. Rev. Lett. 77 (1996) 743.
[28] Z. Q. Qiu and S. D. Bader, Rev. Sci. Instrum 71 (2000) 1243.
[29] A. Forkl, Physica Sripta. T49 (1993) 148.
[30] H. J. Masterson, J. G. Lunney, and J. M. D. Coey, J. Appl. Phys. 81 (1997) 799.
[31] D. Rugar, H. J. Mamin, P. Guethner, S. E. Lambert, J. E. Stern, I. McFadyen, and T. Yogi, J. Appl. Phys. 68 (1990) 1169.
[32] P. C. D. Hobbs, D. W. Abraham, and H. K. Wickramasinghe, Appl. Phys. Lett. 55 (1989) 2357.
[33] S. Hameed, P. Talagala, R. Naik, and L. E. Wenger, Phys. Rev. B 64 (2001) 184406.
chapter 5
[1] L. Berger, J. Appl. Phys. 49 (1978) 2156.
[2] G. G. Cabrera and L. M. Falicov, Phys. Status Solidi B 61 (1974) 539.
[3] P. M. Levy and S. Zhang, Phys. Rev. Lett. 79 (1997) 5110.
[4] M. Singh, C. S. Wang, and J. Callaway, Phys. Rev. B 11 (1975) 287.
[5] J. Banhart and H. Ebert, Europhys. Lett. 32 (1995) 517.
[6] John B. Goodenough, Phys. Rev. 171 (1968) 466.
[7] L. Berger, Phys. Rev. B 2 (1970) 4559.
[8] B. Heinrich and J.A.C. Bland, “Ultrathin Magnetic Structure II”, (Springer-Verlag, New York, 1994) p.100-101.
[9] T. M. Whitney, J. S. Jiang, P. C. Searson, and C. L. Chien, Science 261 (1993) 1316.
[10] Charles R. Martin, Science 266 (1994) 1961.
[11] A. J. Yin, J. Lin, W. Jian, A. J. Bennett, and J. M. Xu, Appl. Phys. Lett. 79 (2001) 1039.
[12] X. W. Wand, G. T. Fei, X. J. Xu, Z. Jin, and L. D. Zhang, J. Phys. Chem. B 109 (2005) 24326.
chapter 6
[1] S. S. P. Parkin, M. Hayashi, and L. Thomas, Science 320 (2008) 190.
[2] J. J. Kim, K. Hirata, Y. Ishida, D. Shindo, M. Takahashi, and A. Tonomura, Appl. Phys. Lett. 92 (2008) 162501.
[3] S. Goolaup, A. O. Adeyeye, and N. Singh, Thin Solid Films 505 (2006) 29.
[4] A. Pérez-Junquera, J. I. Martín, M. Vélez, J. M. Alameda, and J. L. Vicent, Nanotech. 14 (2003) 294.
[5] S.-W. Chang, J.-H. Liu, and J.-T. Lue, Meas. Sci. Technol. 14 (2003) 583.
[6] L. Langer, V. Bayot, E. Grivei, and J.-P Issi, Phys. Rev. Lett. 76 (1996) 479.