研究生: |
趙德宇 Chao, Te-Yu |
---|---|
論文名稱: |
應用於三維光聲造影之高頻CMOS微電容式超音波感測器 A High-Frequency CMOS Micromachined Capacitive Ultrasonic Sensor for Three Dimensional Photoacoustic Imaging |
指導教授: |
盧向成
Lu, Shiang-Cheng |
口試委員: |
李夢麟
劉承賢 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2012 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 76 |
中文關鍵詞: | 電容感測器 、超音波 、光聲影像 |
外文關鍵詞: | capacitive sensor, ultrasonic, photoacoustic imaging |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這項研究提出了一種可用於水中的超音波感測的CMOS微電容式感測器。透過CMOS MEMS的技術,可以將感測器和放大器整合在一起。藉由在感測薄膜下方放置感測電路,可有效降低電路的寄生電容,並且節省整體IC的面積。
本研究目的在於提升傳感器接收到超音波的頻率,將結構共振頻和放大器頻寬提升到15 MHz以上,提升頻率將可增加光聲影像的解析度,對於生醫影像將會有大幅度地改善。
此研究運用CMOS微製程製作電容感測器,成功的呈現超音波訊號。感測薄膜大小為42 μm,透過後製程的步驟我們經由2 μm × 2 μm蝕刻孔將金屬層(Metal 3)蝕刻,再用oxide封閉蝕刻孔。四個薄膜構成一個感測單元其電容值為70 fF。水中超音波訊號的共振頻率為15 MHz。
在量測碳纖維三維光聲造影方面,本研究之橫向解析度為362.5 μm,軸向解析度為300.7 μm;在量測頭髮三維光聲造影方面,本研究之橫向解析度為507 μm,軸向解析度為305 μm。
This study presents a CMOS micromachined capacitive ultrasonic sensor that can be used in water. By using CMOS MEMS technology, the sensor can be integrated with the amplifier. By placing sensing circuit beneath the sensor, we can effectively reduce the parasitic capacitance of the circuit and save the sensor area.
Purpose of this study is to increase the ultrasonic frequency of the sensor. We will increase the structural resonance frequency and bandwidth of the amplifier to 15 MHz. Increasing the frequency will enhance the resolution of photoacoustic imaging.
This study shows the measured ultrasonic signals by the capacitive sensors fabricated by post CMOS fabrication. The sensor size is 42 μm. By using post-CMOS process, we etch the metal layer (Metal 3) through the 2 μm × 2 μm etching holes, and then refill the etching holes by silicon dioxide. Four membranes constitute a single sensor. The total capacitance value is 70 fF. The resonance frequency of the ultrasonic signals in water is 15 MHz.
For the 3D photoacoustic imaging of a carbon fiber, the lateral resolution is 362.5 μm, and the axial resolution is 300.7 μm. For the 3D photoacoustic imaging of an hair, the lateral resolution is 507 μm, and the axial resolution is 305 μm.
[1] M. L. Li, P. H. Wang, P. L. Liao, and S. C. Lu, “Three-dimensional photoacoustic imaging by a CMOS micromachined capacitive ultrasonic sensor,” IEEE Electron Device Letters, vol. 32, no. 8, Aug 2011.
[2] D. Hohm and G. Hess, “A subminiature condenser microphone with silicon nitride membrane and silicon back plate,” Journal of the Acoustical Society of America, vol. 85, pp. 476-480, Jan 1989.
[3] K. Suzuki, K. Higuchi, and H. Tanigawa, “A silicon electrostatic ultrasonic transducer,” IEEE Trans. Ultrason., Ferro electr., Freq. Control, vol. 36, pp. 620-627, Nov 1989.
[4] M. Rafiq and C. Wykes, “The performance of capacitive ultrasonic transducers using v-grooved backplates,” Measurement Science & Technology, vol. 2, pp. 168-174, Feb 1991.
[5] M. I. Haller and B. T. Khuri-Yakub, “A surface micromachined electrostatic ultrasonic air transducer,” IEEE Trans. Ultrason., Ferro electr., Freq. Control, vol. 43,no. 1,Jan 1996.
[6] H. T. Soh, I. Ladabaum, A. Atalar, C. F. Quate, and B. T. Khuri-Yakub, “Silicon micromachined ultrasonic immersion transducers,” Applied Physics Letters, vol. 69, pp. 3674–3676, Dec 1996.
[7] I. Ladabaum, X. Jin, H. T. Soh, A. Atalar, and B. T. Khuri-Yakub, “Surface micromachined capacitive ultrasonic transducers,” IEEE Trans. Ultrason., Ferro electr., Freq. Control, vol. 45, no. 3, pp. 678–690, May 1998.
[8] A. Bozkurt, A. Atalar, and B. T. Khuri-Yakub, “Theory and analysis of electrode size optimization for capacitive microfab-ricated ultrasonic transducers,” IEEE Trans. Ultrason., Ferro electr., Freq. Control, vol. 46, no. 6, pp. 1364–1374, Nov 1999.
[9] H. Jagannathan, G. G. Yaralioglu, A. S. Ergun, F. L. Degertekin, and B. T. Khuri-Yakub, “Micro-fluidic channels with integrated ultrasonic transducers,” in Proc. IEEE Ultrason. Symp., pp. 859–862, 2001.
[10] S. Hansen, N. Irani, F. L. Degertekin, I. Ladabaum, and B. T. Khuri-Yakub, “Defect imaging by micromachined ultrasonic air transducers,” in Proc. IEEE Ultrason. Symp., pp. 1003-1006, 1998.
[11] S. T. Hansen, A. S. Ergun, and B. T. Khuri-Yakub, “Improved modeling and design of microphones using radio frequency detection with capacitive micromachined ultrasonic transducers,” in Proc. IEEE Ultrason. Symp., pp. 961–964, 2001.
[12] M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Review of Scientific Instruments, vol. 77, no. 4, art. no. 041101, 2006.
[13] J. J. Niederhauser, M. Jaeger, and M. Frenz, “real-time three-dimensional optoacoustic imaging using an acoustic lens system,” Applied Physics Letters, vol. 85, no. 5, pp. 846–848, 2004.
[14] S. vaithilingam, T. J. Ma, Y. Furukawa, I. O. Wygant, X. Zhuang, A. Zerda, A. Kamaya, S. S. Gambhir, and B. T. Khuri-yakub, “Three-dimensional photoacoustic imaging using a two-dimensional CMUT array,” IEEE Trans. Ultrason., Ferro electr., Freq. Control, vol. 56, no. 11, Nov 2009.
[15] X. C. Jin, I. Ladabaum, and B. T. Khuri-Yakub, “The microfabrication of capacitive ultrasonic transducers,” International Conference on Solid-State Sensors and Actuators Chicago, pp. 437-440, June 1997.
[16] X. Jin, O. Oralkan, F. L. Degertekin, and B. T. Khuri-Yakub, “Characterization of One-Dimensional Capacitive Micromachined Ultrasonic Immersion Transducer Arrays,” IEEE Trans. Ultrason., Ferro electr., Freq. Control, vol. 48, No. 3, May 2001.
[17] B. Wang, J. L. Su, A. B. Karpiouk, K. V. Sokolov, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 3, May/June 2010.
[18] S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason., Ferro electr., Freq. Control , vol. 54, no. 5, pp. 978–986, May 2007.
[19] G. C. Wetsel, “Photothermal generation of thermoelastic waves in composite media,” IEEE Trans. Ultrason., Ferro electr., Freq. Control, vol. 33, pp. 450–461, 1986.
[20] F. A. McDonald, “Practical quantitative theory of photoacoustic pulse generation,” Applied Physics Letters, vol. 54, pp. 1504–1506, 1989.
[21] Thomas L. Szabo, “Diagnostic Ultrasound Imaging: Inside Out,” Elsevier Academic Press, 2004.
[22] O. Oralkan, A. SanlıErgun, C. H. Cheng, J. A. Johnson, M. Karaman, T. H. Lee, and B. T. Khuri-Yakub, “Volumetric ultrasound imaging using 2-D CMUT arrays,” IEEE Trans. Ultrason., Ferro electr., Freq. Control, vol. 50, No. 11, Nov 2003.
[23] D. M. Mills, “Medical imaging with capacitive micromachined ultrasound transducer (CMUT) arrays,” in Proc. IEEE Ultrason. Symp., 2004.
[24] D. T. Yeh, O. Oralkan, I. O. Wygant, M. O’Donnell, and B. T. Khuri-Yakub, “3-D ultrasound imaging using a forward-looking CMUT ring array for intravascular/intracardiac applications,” IEEE Trans. Ultrason., Ferro electr., Freq. Control, vol. 53, No. 6, June 2006.
[25] O. Oralkan, A. SanlıErgun, J. A. Johnson, M. Karaman, U. Demirci, K. Kaviani, T. H. Lee, and B. T. Khuri-Yakub, “Capacitive micromachined ultrasonic transducers: next-generation arrays for acoustic imaging?” IEEE Trans. Ultrason., Ferro electr., Freq. Control, vol. 49, No. 11, Nov 2002.
[26] A. Ronnekleiv, “CMUT array modeling through free acoustic CMUT modes and analysis of the fluid CMUT interface through fourier transform methods,” IEEE Trans. Ultrason., Ferro electr., Freq. Control, vol. 52, No. 12, Dec 2005.
[27] T. Buma, M. Spisar, and M. O’Donnell, “A high-frequency, 2-D array element using thermoelastic expansion in PDMS,” IEEE Trans. Ultrason., Ferro electr., Freq. Control, vol. 50, No. 9, Sep 2003.