研究生: |
陳信安 Chen, Sin-An |
---|---|
論文名稱: |
金(鍚)-氧化鍚殼核狀奈米線:高溫奈米溫度計 Au(Sn)-SnO2 core-shell nanowires : high temperature nanothermometers |
指導教授: |
周立人
Chou, Li-Jen 陳力俊 Chen, Lih-Juann |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 72 |
中文關鍵詞: | 氧化鍚 、奈米溫度計 、核殼狀 |
外文關鍵詞: | tin oxide, nanothermometer, core-shell |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用鍚粉末作為鍚蒸氣的來源和散布在有350 nm厚氧化矽的矽基板上的250 nm奈米金粒子在高溫下反應,一步驟合成金-氧化鍚核殼奈米線。所得合成產物藉由X-ray繞射儀和具有能量散佈分析儀之穿透式電子鑑定其晶體結構、微結構及化學成分。為了研究其熱膨脹性為,使用臨場穿透式電子顯微鏡。初步發現,在250-750℃下,金(鍚)具有1.02×10-4 (1/K)的熱膨脹係數,而氧化鍚具有5.9×10-6 (1/K)的熱膨脹係數。因此,金(鍚)-氧化鍚核殼奈米線適合作為高溫奈米溫度計。另一方面,藉由金(鍚)之固液轉換溫度與金-鍚二元相圖可初步預測金(鍚)可能之組成,而後由高分辨電子顯微鏡鑑定其組成,最終建立一可能金(鍚)-氧化鍚核殼奈米線之可能成長模型。
In this study, a one-step approach is utilized to fabricate Au-SnO2 core-shell nanowires. 250 nm Au nanoparticles were dispersed on a Si substrate with 350 nm silica capping layer, Sn vapor was provided by Sn powders at elevated temperature. The crystal structure, microstructure, and the chemical composition of the as-grown products were examined by X-ray diffractometer (XRD), and field emission transmission electron microscopy (FETEM) attached with an energy dispersive spectrometer (EDS). To investigate the thermal behaviors of Au(Sn)-SnO2 core-shell nanowires, an in-situ TEM was used to observe the sequential reactions during the process of the nanowires. The Au(Sn) core has a thermal expansion coefficient of 1.02×10-4 (1/K), and the coefficient of thermal expansion of SnO2 shell is 5.9×10-6 (1/K) in the temperature region of 250-750℃. Hence, Au(Sn)-SnO2 core-shell nanowires can be good candidate of high temperature nanothermometers. On the other hand, a possible growth model of Au(Sn)-SnO2 core-shell nanowires can be proposed through the solid-liquid transition temperature of the Au(Sn) core and the Au-Sn binary phase diagram. The Au(Sn) core melted at the temperature region of 200-250℃, then the possible composition of the Au(Sn) core could be predicted by using the Au-Sn binary phase diagram. Finally, the exact composition of the Au(Sn) core were characterized by high resolution transmission electron microscopy (HRTEM).
[1] Younan Xia, Peidong Yang, Yugung Sun, Yiying Wu, Brain Mayers, Byron Gates, Yadong Yin, Franklin Kim, and Haoquan Yan, “One-Dimensional Nanostructures: Synthesis, Characterization, and Applications,” Adv. Mater., 15, 353(2003)
[2] Yiying Wu and Peidong Yang, “Direct Observation of Vapor-Liquid-Solid Nanowire Growth,” J. Am. Chem. Soc., 123, 13, 3165(2001)
[3] X. Duan and C. M. Lieber, “General Synthesis of Compound Semiconductor Nanowires,” Adv. Mater. 12, 4, 298(2000)
[4] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport,” Adv. Mater. 13, 2, 113(2001)
[5] Allon I. Hochbaum, Rong Fan, Rongrui He, and Peidong Yang, “Controlled Growth of Si Nanowire Arrays for Device Integration,” Nano Lett., 5, 457(2005)
[6] Z. R. Dai, J. L. Gole, J. D. Stout, and Z. L. Wang, “Tin Oxide Nanowires, Nanoribbons, and Nanotubes,” J. Phys. Chem. B., 106, 1274(2002)
[7] T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, “Solution-Liquid-Solution Growth of Crystalline III-V Semiconductors-An Analogy to Vapor-Liquid-Solid Growth,” Science 270, 5243, 1791(1995)
[8] X. M. Lu, T. Hanrath, K. P. Johnston, and B. A. Korgel, “Growth of Single Crystal Nanowires in Supercritical Silicon Solution from Tethered Gold Particles on a Silicon Substrate,” Nano Lett. 3, 1, 93(2003)
[9] Thaddeus B. Massalski and H. Okamoto, “Binary Alloy Phase Diagrams,” 2nd ed., 1, 430(1990)
[10] Thaddeus B. Massalski and H. Okamoto, “Binary Alloy Phase Diagrams,” 2nd ed., 3, 2920(1990)
[11] Z. Liu, D. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, B. Lei, and C. Zhou, “Laser Ablation Synthesis and Electron Transport Studies of Tin Oxide Nanowires,” Adv. Mater. 15, 1754(2003)
[12] B. Wang, Y. H. Yang, C. X. Wang, N. S. Xu, and G. W. Yang, “Field Emission and Photoluminescence of SnO2 Nanograss,” J. Appl. Phys. 98, 12, 124303(2005)
[13] S. Luo, P. K. Chu, W. Liu, M. Zhang, and C. Lin, “Origin of Low-temperature Photoluminescence from SnO2 nanowires Fabricated by Thermal Evaporation and Annealed in Different Ambients,” Appl. Phys. Lett. 88, 18, 183112(2006)
[14] L. L. Fields, J. P. Zheng, Y. Cheng, and P. Xiong, “Room-temperature Low-power Hydrogen Sensor Based on a Single Tin Dioxide Nanobelt,” Appl. Phys. Lett. 88, 26, 263102(2006)
[15] A. Yang, X. Tao, R. Wang, S. Lee, and C. Surya, “Room Temperature Gas Sensing Properties of SnO2/Multiwall-carbon-nanotube Composite Nanofibers,” Appl. Phys. Lett. 91, 13, 133110(2007)
[16] S. Choudhury, C. A. Betty, K. G. Girija, and S. K. Kulshreshtha, “Room Temperature Gas Sensitivity of Ultrathin SnO2 Films Prepared from Langmuir-Blodgett Film Precursors,” Appl. Phys. Lett. 89, 7, 071914(2006)
[17] L. Lauhon, M. S. Gudisen, D. Wang, and C. M. Lieber, “Epitaxial Core-shell and Core-multishell Nanowire Heterostructures,” Nature 420, 6911, 57(2002)
[18] C. H. Hsieh, M. T. Chang, Y. J. Chien, L. J. Chou, L. J. Chen, and C. D. Chen, “Coaxial Metal-Oxide-Semiconductor MOS Au-Ga2O3-GaN Nanowires,” Nano Lett. 8, 10, 3288(2008)
[19] S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature 354, 6348, 56(1991)
[20] P. M. Ajayan and S. Iijima, “Capillarity-induced Filling of Carbon Nanotubes,” Nature 361, 6410, 333(1993)
[21] Y. Gao and Y. Bando, “Carbon Nanothermometer Containing Gallium - Gallium's Macroscopic Properties Are Retained on a Miniature Scale in this Nanodevice,” Nature 415, 6872, 599(2002)
[22] T. W. Ebbesen, P. M. Ajayan, H. Hiura, and K. Tanigaki, “Purification of Nanotubes,” Nature 367, 6463, 519(1994)
[23] Y. B. Li, Y. Bando, D. Golberg, and Z.W. Liu, “Ga-filled Single-crystalline MgO Nanotube: Wide-temperature range Nanothermometer,” Appl. Phys. Lett. 83, 5, 999(2003)
[24] N. W. Gong, M. Y. Lu, C. Y. Wang, Y. Chen, and L. J. Chen, “Au(Si)-filled -Ga2O3 Nanotubes as Wide Range High Temperature Nanothermometers,” Appl. Phys. Lett. 92, 7, 073101 (2008)
[25] C. Y. Wang, N. W. Gong, and L. J. Chen, “High-sensitivity Solid-state Pb(Core)/ZnO(Shell) Nanothermometers Fabricated by a Facile Galvanic Displacement Method,” Adv. Mater. 20, 24, 1(2008)
[26] Y. Gao, Y. Bando, and D. Golberg, “Melting and Expansion Behavior of Indium in Carbon Nanotubes,” Appl. Phys. Lett. 81, 22, 4133(2002)