簡易檢索 / 詳目顯示

研究生: 蕭人豪
Hsiao, Jen-Hao
論文名稱: (一)不均勻自旋軌道耦合作用導致量子點接觸系統中磁矩的形成;(二)銅氧類高溫超導之浮動鍵結模型
Magnetic moment formation in quantum point contacts due to nonuniform spin-orbit interaction ; Fluctuating bond model for cuprate superconductivity
指導教授: 洪在明
Hong, Tzay-Ming
陳正中
Chen, Jeng-Chung
口試委員: 崔章琪
Tsuei, Chang-Chyi
吳茂昆
Wu, M. K.
林尚佑
Lin, S. Y.
齊正中
Chi, C. C.
胡崇德
Hu, C. D.
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 168
中文關鍵詞: 量子點磁性形成高溫超導浮動鍵結模型
外文關鍵詞: quantum point contact, moment formation, cuprate superconductivity, fluctuating bond model
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這分論文由兩個部分組成
    在第一部分我們研究量子點接觸系統中電導在0.7平台的奇異現象. 原因可能是由於自旋軌道耦合. 空間均勻的自旋軌道耦合加上庫倫作用會打開自旋能隙.而空間不均勻的自旋軌道耦合會導致磁矩形成. 我們有半古典及量子力學的計算.
    第二部分我們針對銅氧高溫超導發明了浮動鍵結模型理論, 提供一個統一的理論來解釋贗能隙及超導能隙,這個模型抓住了高溫超導的精髓並且可以給出合理的相圖, 參數是由第一原理計算而得.


    This thesis is composed of two parts.
    In part I, we investigate the 0.7 anomaly in the quantum point contact system. The origin of 0.7 G0 may be due to the Rashba spin-orbit interaction. A spatial uniform spin-orbit interaction together with Coulomb interaction
    will open a spin gap, while a non-uniform spin-orbit interaction may lead to a moment formation. We have both semiclassical and quantum mechanical approaches.
    In part II, we introduce a fluctuating bond model for cuprate high-temperature superconductivity, which provides a unified framework for both pseudogap and superconducting gap. This model captures the essence of cuprate conductivity
    and leads to a reasonable phase diagram with the help of
    ab initio simulation.

    I Magnetic Moment Formation in Quantum Point Contacts due to Nonuniform Spin-Orbit Interaction 15 1 INTRODUCTION 19 1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . 19 1.2 Purpose of this work .. . . . . . . . . . . . . . . . . . . . . . . . . . 20 2 REVIEW OF 0.7 ANOMALY 23 2.1 Quantum point contact . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2 Review of 0.7 anomaly . . . . . . . . . . . . . . . . . . . . . . . . . 24 3 SEMICLASSICAL APPROACH 39 3.1 Rashba spin-orbit interaction . . . ... . . . . . . . . . . . . . . . . . . 40 3.2 Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . 41 3.3 Order of magnitude . . . . . . . . . . . . . . . . . . . . . . . . 44 3.4 Oscillatory at integer plateau . . . . . . ..... . . . . . . . . . . . . . . . . 50 4 MOMENT FORMATION 63 4.1 Model of QPC . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.1.1 Self energy of metal contacts ΣS/D . . . . . . . . . . . . . . ...................... . 65 4.1.2 Self energy of many-body interaction ΣσI . . . . . . . . ................................. . . . . 67 4.1.3 Hamiltonian of QPC H . . . . . . . ........... . . . . . . . . . . . . . . . 68 4.1.4 Self-consistent process . . . . . ..... . . . . . . . . . . . . . . . . . 70 4.2 The magnitude of parameters . . . . .. . . . . . . . . . . . . . . . . . . 72 4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.3.1 Density distribution nσ(x, z) . . . ................ . . . . . . . . . . . . . . . . 73 4.3.2 Conductance Gσ . . . . . . . . .... . . . . . . . . . . . . . . . . . 74 11 12 CONTENTS 4.3.3 Spin polarization P(x, z) . . . . . . . . ............ . . . . . . . . . . . . . 74 4.3.4 Discussions and conclusions . . . ....... . . . . . . . . . . . . . . . . 77 5 SUMMARY AND PERSPECTIVES 79 5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.2 Perspective and a proposal of SPINFET . . . . ................. . . . . . . . . . . . . 80 II Fluctuating Bond Model for Cuprate superconductivity 81 6 INTRODUCTION OF CUPRATE SUPERCONDUCTIVITY 85 6.1 Overview . . . . .. . . . . . . . . . . . . . . . . . . . 85 6.2 Symmetry . . . . . . . . . . . . . . . . . . . . . . . . 87 6.2.1 Superconductivity gap . . . . ......... . . . . . . . . . . . . . . . . . . 87 6.2.2 Pseudogap . . . . . . . . . . . . . . . . . . . . . . . . 89 6.3 Pairing mechanism? . . . . .. . . . . . . . . . . . . . . . . . . 90 7 FLUCTUATING BOND MODEL 95 7.1 Fluctuating Bond Model . . . . . . . . . . . . . . . . . . . . . . . . . . 96 7.1.1 Anharmonic electron phonon coupling . . . . . . ...................... . . . . . . . 96 7.1.2 Hamiltonian of FBM . . . . ....... . . . . . . . . . . . . . . . . . . . 97 7.2 Pseudogap . . . . . . . . . . . . . . . . . . . . . . . 103 7.3 Path Integral Formulism . . . . . . . . . . . . . . . . . . . . . . . 105 7.3.1 Lagrangian Form of FBM++C in Real Space . . . . . . ................................ . . . 108 7.3.2 Adding Source Terms . . . . . . . . . . .... . . . . . . . . . . . . . 120 7.3.3 Normal State Electron Propagator and Self Energy . . . . ..................................... . . 122 7.3.4 Evaluation of Interaction . . . .. . . . . . . . . . . . . . . . . . . 125 7.3.5 Combine terms: Key Result . . . . . . . . . . ........... . . . . . . . . . 129 7.3.6 If the C4 symmetry is broken . . . . . . ............. . . . . . . . . . . . . 130 7.4 Eliashberg Gap Equations . . . . . .. . . . . . . . . . . . . . . . . . 132 8 PLASMON PAIRING? 137 8.1 Plasmon pairing? . . . . . . . . . . . . . . . . . . . . . . . . 138 8.2 Migdal theorem . . . . . . . . . . . . . . . . . . . . . . . . 142 9 RESULTS AND DISCUSSIONS 143 9.1 Phase diagram . . . . .. . . . . . . . . . . . . . . . . . . . 144 9.2 Isotope shift . . . . . . .. . . . . . . . . . . . . . . . . . . 148 9.3 Gap to Tc ratio . . . . . . . . . . . . . . . . . . . . . . . . . 149 9.4 Conclusions and future work . . . . . . . . . ....... . . . . . . . . . . . . . 152 A BCS Test 155 CONTENTS 13 Appendix 155 A.1 BCS theory . . . . . . . . . . . . . . . . . . . . . . . . . 155 A.2 Eliashberg Equation . . . . . . . . . . . . . . . . . . . . . . . . 156 A.3 Electron-electron interaction Γ . . . . . . . . . . . .......... . . . . . . . . . . . 157 A.4 Model . . . . . . . . . . .. . . . . . . . . . . . . . . 158 A.5 Results . . . . . . . .. . . . . . . . . . . . . . . . . 160

    [1] A very recent survey and discussions on this topic can be found in J. Phys.: Condens.
    Matter 20, No. 16 (2008).
    [2] Yigal Meir, Kenji Hirose, and Ned S. Wingreen, Phys. Rev. Lett. 89, 196802 (2002);
    T. Rejec and Y. Meir, Nature (London) 442, 900 (2006).
    [3] Kenji Hirose, Yigal Meir and Ned S. Wingreen, Phys. Rev. Lett. 90, 026804 (2003).
    [4] S. M. Cronenwett, H. J. Lynch, D. Goldhaber-Gordon, L. P. Kouwenhoven, C. M.
    Marcus, K. Hirose, N. S. Wingreen, and V. Umansky, Phys. Rev. Lett. 88, 226805
    (2002).
    [5] K. J. Thomas, J. T. Nicholls, M. Y. Simmons, M. Pepper, D. R. Mace, and D. A.
    Ritchie, Phys. Rev. Lett. 77, 135 (1996).
    [6] A. C. Graham., K. J. Thomas, M. Pepper, M. Y. Simmons, and D. A. Ritchie,
    Physica E 22, 264 (2004).
    [7] Chi-Te Liang (private communication).
    [8] Gerald D. Mahan, Many-Particle Physics (New York, Kluwer Academic/Plenum
    Publishers, 2000).
    [9] David Sanchez and Llorenc Serra, Phys. Rev. B. 74, 153313 (2006).
    [10] Henrik Bruus and Karsten Flensberg, Many-Body Quantum Theory in Condensed
    Matter Physics (Oxford, OUP, 2004).
    [11] Junsaku Nitta, Tatsushi Akazaki, Hideaki Takayanaji, and Takatomo Enoki, Phys.
    Rev. Lett. 78, 1335 (1997).
    [12] D. J. Reilly, G. R. Facer, A. S. Dzurak, B. E. Kane, R. G. Clark, P. J. Stiles, R.
    G. Clark, A. R. Hamilton, J. L. O*Brien, N. E. Lumpkin, L. N. Pfeiffer, and K. W.
    West, Phys. Rev. B. 63, 121311 (2001).
    [13] D. J. Reilly, T. M. Buehler, J. L. O*Brien, A. R. Hamilton, A. S. Dzurak, R. G.
    Clark, B. E. Kane, L. N. Pfeiffer and K. W. West, Phys. Rev. Lett. 89, 246801
    (2002).
    163
    164 BIBLIOGRAPHY
    [14] C. K. Wang, K. F. Berggren, Phys. Rev. B. 54, R14257 (1996).
    [15] L. P. Rokhinson, L N. Pfeiffer and K. W.West, Phys. Rev. Lett. 96, 156602 (2006).
    [16] L. P. Rokhinson et al., Phys. Rev. Lett. 93, 146601 (2004).
    [17] Gabriele F. Giuliani and Giovanni Vignale, Quantum Theory of the Electron Liquid.
    (UK, Cambridge University Press, 2005).
    [18] David K. Ferry and Stephen M. Goodnick, Transport in Nanostructures (UK,
    Cambridge University Press, 1997).
    [19] W. G. van der Weil, S. De. Franceschi, T. Fujisawa, J. M. Elzerman, S. Tarucha,
    L. P. Kouwenhoven, Science 289, 2105 (2000).
    [20] Y. Yoon, L. Mourokh, T. Morimoto, N. Aoki, Y. Ochiai, J. L. Reno and J. P. Bird,
    Phys. Rev. Lett. 99, 136805 (2007).
    [21] Semiconductor Spitronics and Quantum Computation, edited by D. D. Awcshalom,
    D. Loss and N. Samarth (Springer, Berlin, 2002)
    [22] N. S. Averkiev, L. E. Golub, A. S. Gurevich, V. P. Kochereshko, A. V. Platonov,
    A. S. Shkolnik and Yu. P. Efimov, Phys.Rev. B 74, 033305 (2006).
    [23] A. Balocchi, Q. H. Duong, P. Renucci, B. L. Liu, C. Fontaine, T. Amand, D.
    Lagarde and X. Marie, Phys. Rev. Lett. 107, 136604 (2011).
    [24] Ramamurti Shankar, Principles of Quantum Mechanics, (New York, Plenum Press,
    1994).
    [25] Sara M. Cronenwett, Tjerk H. Oosterkamp, Leo P. Kouwenhoven, Science 281,
    540 (1998).
    [26] B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P.
    Kouwenhoven, D. van der Marel, and C. T. Foxon, Phys. Rev. Lett. 60, 848 (1988).
    [27] G. Kirczenow, Phys. Rev. B. 39, 10452 (1989).
    [28] A. Szafer and D. Stone, Phys. Rev. Lett. 62, 300 (1989).
    [29] E. Tekman and S. Ciraci, Phys. Rev. B. 39, 8772 (1989).
    [30] S. He and S. Das Sarma, Phys. Rev. B. 40, 3379 (1989).
    [31] D. van der Marel and E. G. Haanappel Phys. Rev. B. 39, 7811 (1989).
    [32] M. B“uttiker, Phys. Rev. B. 41, 7906 (1990).
    [33] C. K. Wang and K. F. BerggrenLin Phys. Rev. B. 57, 4552 (1998).
    BIBLIOGRAPHY 165
    [34] J. H. Hsiao, K. M. Liu, S. Y. Hsu and T. M. Hong, Phys. Rev. B 79, 033304
    (2009).
    [35] R. Eisberg and R. Resnick, Quantum Physics (New York Wiley, 1974).
    [36] B. K. Agarwal and Hari Prakash, Quantum Mechanics (PHI Learning Pvt Ltd,
    2004).
    [37] Francis F. Chen, Introduction to Plasma Physics (New York, Plenum Press, 1974)
    [38] Ehud Shafir, Min Shen, and Semion Saikin, Phys. Rev. B. 70, 241302 (2004).
    [39] J. B. Miller, D. M. Zumb“uhl, C. M. Marcus, Y. B. Lyanda-Geller, D. Goldhaber-
    Gordon, K. Campman, and A. C. Gossard, Phys. Rev. Lett. 90, 076807 (2003).
    [40] Michael Pustilnik and Leonid Glazman, J. Phys.: Condens. Matter 16, R513
    (2004).
    [41] R. Landauer, IBM J. Res. Dev. 1, 233 (1957); Philos. Mag. 21, 863 (1970).
    [42] Eugen Merzbacher, Quantum Mechanics (New York, John Wiley, 1998).
    [43] F. Sfigakis, C. J. B. Ford, M. Pepper, M. Kataoka, D. A. Ritchie, and M. Y.
    Simmons, Phys. Rev. Lett. 100, 026807 (2008).
    [44] L. P. Rokhinson, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 96, 156602
    (2006); A. R. Hamilton, R. Danneau, O. Klochan, W. R. Clarke, A. P. Micolich, L.
    H. Ho, M. Y. Simmons, D. A. Ritchie, M. Pepper, K. Muraki, and Y. Hirayama, J.
    Phys.: Condens. Matter 20, 164205 (2008).
    [45] P. J. Simmonds, F. Sfigakis, H. E. Beere, D. A. Ritchie, M. Pepper, D. Anderson,
    and G. A. C. Jones, Appl. Phys. Lett. 92, 152108 (2008).
    [46] G. Scappucci, L. Di Gaspare, E. Giovine, A. Notargiacomo, R. Leoni, and F.
    Evangelisti, Phys. Rev. B 74, 035321 (2006).
    [47] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Moln╞ar,
    M. L. Roukes, A. Y. Chtchelkanova, D. M. Treger, Science 294, 1488 (2001)
    [48] David D. Awschalom and Michael E. Flatt╞e, Nature Physics 3, 153-159 (2007).
    [49] Supriyo Bandyopadhyay and Marc Cahay ,Introduction to spintronics (CRC, New
    York,United States,2008)
    [50] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, and F. Petroff ,Phys.
    Rev. Lett. 61, 2472 (1988).
    166 BIBLIOGRAPHY
    [51] P. Debray, S. M. S. Rahman, J. Wan, R. S. Newrock, M. Cahay, A. T. Ngo, S.
    E. Ulloa, S. T. Herbert, M. Muhammad, M. Johnson, Nature Nanotechnology 4,
    759-764 (2009).
    [52] Supriyo Datta and Biswajit Das, Appl. Phys. Lett. 56, 665 (1990).
    [53] John Schliemann, J. Carlos Egues, and Daniel Loss, Phys. Rev. Lett. 90, 146801
    (2003)
    [54] Hyun Cheol, Jae Hyun Kwon, Jonghwa Eom, Joonyeon Chang, Suk Hee Han,
    Mark Johnson, Science 325, 1515 (2009)
    [55] K. C. Hall and M. E. Flatt╞e, Appl. Phys. Letter 88, 162503 (2006)
    [56] Y. K. Kato, R. C. Myers, A. C. Gossard, D. D. Awschalom, Science 306, 1910
    (2004).
    [57] L. P. Rokhinson, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 96, 156602
    (2006)
    [58] S. M. Frolov, A, Venkatesan, W. Yu, J. A. Folk and W. Wegscheider, Phys. Rev.
    Lett. 102, 116802 (2009)
    [59] J. Wan, M. Cahay, P. Debray and R. Newrock, Phys. Rev. B 80, 155440 (2009).
    [60] S. M. Cronenwett, H. J. Lynch, D. Goldhaber-Gordon, L. P. Kpuwenhoven, C. M.
    Marcus, K. Hirose, N. S. Wingreen and V. Umansky, Phys. Rev. Lett. 88, 226805
    (2002)
    [61] Kenji Hirose, Yigal Meir, and Ned S. Wingreen, Phys. Rev. Lett. 90, 026804 (2003)
    [62] Yigal Meir, Kenji Hirose, and Ned S. Wingreen, Phys. Rev. Lett. 89, 196802 (2002)
    [63] Y. Yoon, M.-G. Kang, P. Ivanushkin, L. Mourokh, T. Morimoto, N. Aoki, J. L.
    Reno, Y. Ochiai and J. P. Bird, Applied Physics Letters 94, 213103 (2009)
    [64] Andreas Lassl, Peter Schlagheck and Klaus Richter, Phys. Rev. B 75, 045346
    (2007).
    [65] Mods Brandbyge, Jose-Luis Mozos, Pablo Ordejon, Jeremy Taylor and Kurt Stokbro,
    Phys. Rev. B 65, 165401 (2002).
    [66] Supriyo Datta, Electronic Transport in Mesoscopic System (Cambridge University,
    Cambridge, England,1995)
    [67] David Sanchez and Llorenc Serra, Phys. Rev. B 74, 153313 (2006).
    [68] Peter Jaksh, Irina Yakimenko and Karl-Fredrik Berggren, Phys. Rev. B 74, 235320
    (2006).
    BIBLIOGRAPHY 167
    [69] Ehud Shafir, Min Shen, and Semion Saikin, Phys. Rev. B 70, 241302(R) (2004).
    [70] J. B. Miller, D. M. Zumb“uhl, C. M. Marcus, Y. B. Lyanda-Geller, D. Goldhaber-
    Gordon, K. Campman and A. C. Gossard, Phys. Rev. Lett. 90, 076807 (2003).
    [71] National Taiwan university Doctoral Dissertation of Ming-Hao Liu, (2008).
    [72] Francisco Mireles and George Kirczenow, Phys. Rev. B 64, 024426 (2001).
    [73] J. G. Bednorz, K. A. Mller, Z. Phys., B Condensed Matter, 64, p. 193 (1986).
    [74] M. K. Wu, J. R. Ashburn, C. J. Torng, R. L. Meng, L. Gao, Z. J. Huang, Y. Q.
    Wang, and C. W. Chu, Phys. Rev. Lett. 58, 908 (1987).
    [75] W. L. McMillan, Phys. Rev. 167, 331 (1967).
    [76] M. L. Cohen and P. W. Anderson, Superconductivity in d-and f-Band Metals
    (Edited by DOUGLASS D.H.) p. 17, AlP New York (1972).
    [77] C. C. Tsuei, J. R. Kirtley, C. C. Chi, Lock See Yu-Jahnes, A. Gupta, T. Shaw, J.
    Z. Sun, and M. B. Ketchen, Phys. Rev. Lett. 73, 593 (1994)
    [78] J. Tomaschko, S. Scharinger, V. Leca, J. Nagel, M. Kemmler, T. Selistrovski, D.
    Koelle, and R. Kleiner, arXiv:cond-mat/1203.5237 (2012).
    [79] Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien, T. Hanaguri, M. Azuma,
    M. Takano, H. Eisaki, H. Takagi, S. Uchida, and J. C. Davis, Science 315, 1380
    (2007).
    [80] J. Chang, Nicolas Doiron-Leyraud, Francis Lalibert╞e, R. Daou, David LeBoeuf, B.
    J. Ramshaw, Ruixing Liang, D. A. Bonn, W. N. Hardy, Cyril Proust, I. Sheikin, K.
    Behnia and Louis Taillefer, arXiv:cond-mat/1103.3044 (2011).
    [81] E. G. Maksimov and O. V. Dolgov, arXiv:cond-mat/0707.2489 (2007).
    [82] R. A. Nistor, G. J. Martyna, D. M. Newns2 C. C. Tsuei, and M. H. Muser, Phys.
    Rev. B. 83, 144503 (2011).
    [83] V. Kresin, S. Wolf, Rev. Mod. Phys. 81, 481 (2009).
    [84] Hugo Keller and Annette Bussmann-Holder, Advances in Condensed Matter
    Physics, 393526 (2010).
    [85] J. Mustre de Leon, S. D. Conradson, I. Batistic and A. R. Bishop, Phys. Rev. Lett.
    65, 1675 (1990).
    [86] R. P. Sharma, S. B. Ogale, Z. H. Zhang, J. R. Liu, W. K. Chu, Boyed Veal, A.
    Paulikas, H. Zheng and T. Venkatesan, Nature 404, 736 (2000).
    168 BIBLIOGRAPHY
    [87] H. Uchiyama, A.Q. R. Baron, S. Tsutsui, Y. Tanaka, W.-Z. Hu, A. Yamamoto, S.
    Tajima, and Y. Endoh, Phys. Rev. Lett. 92, 197005 (2004).
    [88] P. Monthoux, D. Pines, G. G. Lonzarich, Nature 450, 1177 (2007).
    [89] C. Varma, Phys. Rev. B. 73, 155113 (2006).
    [90] Z. Hiroi, N. Kobayashi and M. Takano, Nature 371, 139 (1994).
    [91] D. Zech, H. Keller, K. Conder, E. Kaldis, E. Liarokapis, N. Poulakis and K. A.
    Mller, Nature 371, 681 (1994).
    [92] P. W. Anderson, Mat. Res. Bull. 8, 153 (1972).
    [93] P. W. Anderson, Science 235,1196 (1987).
    [94] S. Doniach and E. H. Sondheimer, Green*s function for solid state physicist (London,
    Imperial Collage Press, 1998).
    [95] B. Edegger, V. N. Muthukumar and C. Gros, Advances in Physics Vol.56, No.6,
    927-1033 (2007).
    [96] Naoto Nagaosa and Patrick Lee, Phys. Rev. B. 45, 966 (1992).
    [97] Menke U. Ubbens and Patrick Lee, Phys. Rev. B. 49, 6853 (1994).
    [98] Matthias Vojta, Advances in physics Vol.58, No.6 699-820 (2009).
    [99] A. Kanigel, M. R. Norman, M. Randeria, U. Chatterjee, S. Souma, A. Kaminski,
    H. M. Fretwell, S. Rosenkranz, M. Shi, T. Sato, T. Takahashi, Z. Z. Li, H. Raffy,
    K. Kadowaki, D. Hinks, L. Ozyuzer and J. C. Campuzano, Nature 2, 447 (2006).
    [100] R. Zeyhera and A. Grecoa, arXiv:cond-mat/0210110 (2002).
    [101] J. A. Robertson, S. A. Kivelson, E. Fradkin, A. C. Fang, and A. Kapitulnik, Phys.
    Rev. B. 74, 134507 (2006).
    [102] B. Mallett, G. V. M. Williams, A. B. Kaiser, E. Gilioli, F. Licci, T. Wolf, J. L.
    Tallon, arXiv:1202.5078 (2012).
    [103] G. D. Mahan, Phys. Rev. B. 56, 8322 (1997).
    [104] Giustino F, Cohen ML and Louie SG, Nature 452 975 (2008).
    [105] Heid R, Bohnen K-P, Zeyher R and Manske D, Phys. Rev. Lett. 100 137001
    (2008).
    [106] Gerald D. Mahan, Many-Particle Physics (New York, Kluwer Academic/Plenum
    Publishers, 2000).
    BIBLIOGRAPHY 169
    [107] K. Binder, Phys. Rev. B. 29, 341 (1984).
    [108] Jeffrey W. Lynn editor, High temperature superconductivity, Chapter 9, Philip
    B. Allen (New York, Springer-Verlag Inc., 1990).
    [109] Johannes Bauer, Jong E. Han and Olle Gunnarsson, Phys. Rev. B. 84, 184531
    (2011).
    [110] Feliciano Giustino, Marvin L. Cohen and Steven G. Louie, Nature 452, 975
    (2008).
    [111] Pavarini E, Dasgupta I, Saha-Dasgupta T, Jepsen O, Anderson OK, Phys. Rev.
    Lett. 87, 047003 (2001).
    [112] Vladimir I Anisimov, F. Aryasetiawan and A. I. Lichtenstein. J. Phys.:Condens.
    Matter 9 767, (1997).
    [113] Henrik Bruus and Karsten Flensberg, Many-Body Quantum Theory in Condensed
    Matter Physics (Oxford, OUP, 2004).
    [114] Andreas Lassl, Peter Schlagheck and Klaus Richter, Phys. Rev. B 75, 045346
    (2007).
    [115] D. M. Newns, C. C. Tsuei, R. P. Huebener, P. J. M. van Bentum, P. C. Pattnaik
    and C. C. Chi, Phys. Rev. Lett. 73, 1695 (1994)
    [116] J. R. Schrieffer, Theory of superconductivity (W. A. Benjamin Inc., New York
    1964).
    [117] D. J. Pringle, G. V. M. Williams and J. L. Tallon, Phys. Rev. B 62, 12527 (2000).
    [118] J. Y. T. Wei, C. C. Tsuei, P. J. M. van Bentum, Q. Xiong, C. W. Chu and M. K.
    Wu, Phys. Rev. B 57, 3650 (1998).
    [119] D. S. Inosov, J. T. Park,1 A. Charnukha, Yuan Li, A. V. Boris, B. Keimer and
    V. Hinkov, Phys. Rev. B 83, 214520 (2011).
    [120] D. M. Newns and C. C. Tsuei, Nature 3 184 (2007).
    [121] Gil Drachuck, Meni Shay, Galina Bazalitsky, Rinat Ofer, Zaher Salman, Alex
    Amato, Christof Niedermayer, Dirk Wulferding, Peter Lemmens and Amit Keren1,
    arXiv:cond-mat/1205.4729 (2012).
    [122] Alexander L. Fetter and John Dirk Walecka, Quantum theory of many-particle
    systems 1971.
    [123] R. W. Morse and H. V. Bohm, Phys. Rev. 108, 1094 (1957).
    [124] H. Rietschel and L. J. Sham, Phys. Rev. B 28, 5100 (1983).
    170 BIBLIOGRAPHY
    [125] M. Grabowski and L. J. Sham, Phys. Rev. B 29, 6132 (1984).
    [126] A. B. Midgal, Sov. Phys. JETP 7, 996 (1958).
    [127] Chapter 9 of High temperaturesuperconductivity edited by Jeffrey W. Lynn,
    Springer-Verlay 1990.
    [128] The code used here is called mg7bcskfreedisp37.c. The data is saved in the cluster
    jhsiao/mfgetgapcode7/getgap/BCS/ohgod/form/T/simple/period/gap/bvbcs/stnf
    and is plotted in matlab file called BCS-Jun21.m.
    [129] Althought the form factors are dismissed via setting sin.half = 1.0 and =0 from the old FBM code, there is a factor 2 remains in the fac.k = 2. .
    sin.half(kx, ky, ialpha) . sin.half(ka, ky, ibeta) and fac.kpr. You can see it in
    the gap.update.dir. Therefore the effective coupling VBCS should be 4 times bagger
    than what we input. Then Tc becomes the smae order as numerical result.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE