簡易檢索 / 詳目顯示

研究生: 陳生瑞
Sheng-Jui Chen
論文名稱: 高精密光偏振量測與3.5米懸吊式Fabry-Perot干涉儀之回饋控制
High precision measurement of optical polarization and feedback control of the 3.5 m suspended Fabry-Perot interferometer
指導教授: 倪維斗
Wei-Tou Ni
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2006
畢業學年度: 95
語文別: 中文
論文頁數: 227
中文關鍵詞: 真空雙折射真空二色性軸粒子Fabry-Perot干涉儀準直控制橢圓率偵測Cotton-Mouton效應轉移函數量測地震雜訊隔離
外文關鍵詞: Vacuum birefringence, Vacuum dichroism, Axion, Fabry-Perot interferometer, Alignment control, Ellipsometry, Cotton-Mouton effect, Transfer function measurement, Seismic noise isolation
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Q & A (QED[Quantum ElectroDynamics] Test and Axion search)實驗是一個以探測真空雙折射效應為目標之實驗 [1,2], 其主要由一3.5米懸吊式Fabry-Perot干涉儀, 一轉動永久磁鐵及一組橢圓率偵測儀所構成。 實驗中所使用之旋轉永久磁鐵, 中心磁場最大為2.3 T, 磁場區域長度為0.6米, 可使真空(或氣體)產生偏極化而導致雙折射性。 此外, 為了提高偵測靈敏度, 我們將磁鐵旋轉在5~10 rev/s的速度之間, 將雙折射訊號提高至10~20 Hz的兩倍轉動頻率區間。
    當線偏振雷射光通過此磁場作用區域後,其偏振態會由線偏振轉換為橢圓偏振。 利用光在Fabry-Perot干涉儀內來回往返之特性, 我們可將橢圓偏振之橢圓率放大為2F/\pi倍,其中F為Fabry-Perot干涉儀之精細度。F值在最近幾個月的實驗中, 提升至28,000~32,000之間;
    所對應之光在干涉儀中的來回次數或橢圓率之放大倍數為17,800~20,370倍。本階段實驗研究的一項主要工作是改進Q & A實驗中的回饋控制系統, 使其更加穩定, 更加安靜,並完成Fabry-Perot干涉儀曲面鏡之準直控制。本階段實驗研究的另一項主要工作是改善光偏振測量的靈敏度。橢圓率偵測儀由一對Glan-Taylor型式之偏極化鏡, 一四分波片及一偏振旋轉調制器所組成。偏極化鏡之消光比低於5*10^{-9}。 移除四分波片後,此橢圓率偵測儀可以用來量測偏振旋轉效應。我們對氣體進行了Cotton-Mouton效應(CME)之量測實驗, 以校正實驗裝置。氮氣在數個不同氣壓下進行CME量測(溫度~19.5 deg. C), 所得之氮氣雙折射效應為\Delta n(N_2)=-(2.66+-0.12)*10^{-13}(B/1T)^2(P/1atm)。空氣在一大氣壓, 溫度23.5 deg. C下, 雙折射效應\Delta n(air)=-(6.73+-0.26)*10^{-13}(B/1T)^2(P/1atm)。 此實驗結果, 與文獻中其它實驗所得到之結果一致 [70,79]。目前, Q & A實驗的橢圓率偵測靈敏度在頻率10~20 Hz間為5*10^{-7} rad*Hz^{-1/2}。移除四分波片, 偏振旋轉之偵測靈敏度在頻率10~20 Hz間為1.4*10^{-6} rad*Hz^{-1/2}。 此靈敏度, 使得Q & A實驗有機會來驗證PVLAS所得到之偏振旋轉效應 [29]。我們在磁場大小B=2.3 T、 磁場作用區域長度L=0.6 m (B^2L^2=1.6 T^2 m^2), 以及雷射光在磁場作用區域內來回往返18,700次的實驗狀態下,進行了首次偏振旋轉的量測實驗, 所測得之偏振旋轉效應為(2.8+-2.8)*10^{-13} rad/pass。 由於沒有明顯之偏振旋轉訊號, 我們可以由此結果給出軸子耦合至兩個光子之耦合常數上限,
    為g_{a\gamma\gamma}<1.7*10^{-6} GeV^{-1}, 在軸子質量m_a<2.2 meV 之範圍內。


    The Q & A experiment [1,2],aiming at the detection of vacuum birefringence predicted by quantum electrodynamics,
    consists mainly of a suspended 3.5 m Fabry-Perot interferometer, a rotating permanent dipole magnet and an ellipsometer. The permanent magnet,
    with maximum central magnetic field of 2.3 T and field region length of 0.6 m, is used to polarize the vacuum (or gas) traversed by the light resonating inside the Fabry-Perot interferometer. To increase the detection sensitivity, the magnet is rotated at 5~10 rev/s to produce a time-dependent signal at twice the rotation frequency.
    The time-dependent signal is amplified 2F/\pi times by the Fabry-Perot interferometer, where F is the finesse of Fabry-Perot interferometer. For the last 3 months, the finesse F of the Fabry-Perot cavity is increased to 28,000~32,000 corresponding to a gain factor of 17,800~20,370. The feedback control system is improved to be more stable and less noisy, and an alignment control is successfully implemented on the Fabry-Perot interferometer.
    The ellipsometer is formed by a pair of Glan-Taylor type polarizing prism, a quarter-wave plate and a polarization rotation modulator. Without the quarter-wave plate, the ellipsometer becomes a polarization-rotation measuring instrument. The extinction ratio of the polarizing prism is lower than 5*10^{-9}. The apparatus is calibrated by performing the measurement of gaseous Cotton-Mouton effect (CME). The measurement of nitrogen CME is taken at several different pressures and room temperature of ~19.5 deg. C.
    The birefringence in nitrogen is measured to be \Delta n(N_2)=-(2.66+-0.12)*10^{-13}(B/1 T)^2(P/1 atm).
    The CME of air at the atmospheric pressure and room temperature 23.5 deg. C is also measured and the birefringence in air is \Delta n(air)=-(6.73+-0.26)*10^{-13}(B}/1 T)^2(P/1 atm). These results agree with other measurements found in the literature [70,79]. At present,
    the sensitivity for ellipticity detection is 5*10^{-7}rad.Hz}^{-1/2} at 10~20 Hz and that for polarization-rotation detection is 1.4*10^{-6}rad.Hz}^{-1/2} at 10~20 Hz.
    With this sensitivity, it is possible to check the polarization rotation effect recently observed by the PVLAS collaboration [29]. Our first results give (2.8+-2.8)*10^{-13} rad/pass, at B=2.3 T with 18,700 passes through a L=0.6 m long magnet (B^2L^2=1.6 T^2m^2). From the absence of an optical rotation, we were able to set a limit on axion coupling to two photons of g_{a\gamma\gamma}<1.7*10^{-6} GeV^{-1}, for axion mass m_a<2.2 meV.

    論文摘要 iii Abstract v 誌謝 vii 1 導論 1 1.1 QED真空雙折射 . . . . . . . . . . . . . . . . . . . .1 1.2 (贗)純量場與軸子理論 . . . . . . . . . . . . . . . . 3 1.3 真空雙折射實驗與Q & A 實驗之歷程 . . . . . . . . . . 5 1.4 論文章節概要. . . . . . . . . . . . . . . . . . . . 7 2 Q & A 實驗概觀 9 2.1 前端光學元件 . . . . . . . . . . . . . . . . . . . .10 2.1.1 雷射. . . . . . . . . . . . . . . . . . . . . . . 10 2.1.2 光學隔離器 . . . . . . . . . . . . . . . . . . . .10 2.1.3 雷射相位調制器. . . . . . . . . . . . . . . . . . 14 2.1.4 配模透鏡組. . . . . . . . . . . . . . . . . . . . 14 2.1.5 光接收器. . . . . . . . . . . . . . . . . . . . . 14 2.1.6 偏極化鏡. . . . . . . . . . . . . . . . . . . . . 14 2.2 懸吊系統. . . . . . . . . . . . . . . . . . . . . . 15 2.2.1 X-Pendulum交叉擺 . . . . . . . . . . . . . . . . .15 2.2.2 鏡面懸吊—複擺. . . . . . . . . . . . . . . . . . 20 2.3 Fabry-Perot干涉儀 . . . . . . . . . . . . . . . . . 24 2.4 2.3 T 旋轉永久磁鐵. . . . . . . . . . . . . . . . . 27 2.5 光偏振偵測元件. . . . . . . . . . . . . . . . . . . 29 2.6 真空系統. . . . . . . . . . . . . . . . . . . . . . 34 3 轉移函數量測與閉迴路控制 37 3.1 懸吊系統與力學轉移函數. . . . . . . . . . . . . . . 37 3.2 轉移函數量測. . . . . . . . . . . . . . . . . . . . 43 3.2.1 位移測量系統. . . . . . . . . . . . . . . . . . . 43 3.2.2 致動器. . . . . . . . . . . . . . . . . . . . . . 50 3.3 數據分析. . . . . . . . . . . . . . . . . . . . . . 50 3.3.1 非參數式方法 (Non-Parametric Method) . . . . . . .51 3.3.2 參數式方法 (Parametric Method) . . . . . . . . . .53 3.3.3 結果 . . . . . . . . . . . . . . . . . . . . . . .53 3.4 閉迴路控制測試−主動阻尼控制. . . . . . . . . . . . .57 3.4.1 迴圈濾波器之設計. . . . . . . . . . . . . . . . . 57 3.4.2 控制結果 . . . . . . . . . . . . . . . . . . . . .62 4 回饋控制系統 65 4.1 系統概觀. . . . . . . . . . . . . . . . . . . . . . 65 4.2 Fabry-Perot干涉儀之共振模與控制誤差訊號 . . . . . . 67 4.2.1 誤差訊號之偵測法. . . . . . . . . . . . . . . . . 69 4.2.2 Fabry-Perot干涉儀之不準直型式. . . . . . . . . . .71 4.3 縱向控制. . . . . . . . . . . . . . . . . . . . . . 73 4.4 干涉儀鏡面準直控制 . . . . . . . . . . . . . . . . .78 4.4.1 Gouy相位之累積. . . . . . . . . . . . . . . . . . 80 4.4.2 射頻象限光偵測器. . . . . . . . . . . . . . . . . 81 4.4.3 光點居中控制. . . . . . . . . . . . . . . . . . . 86 4.4.4 迴圈濾波器. . . . . . . . . . . . . . . . . . . .86 4.4.5 控制結果. . . . . . . . . . . . . . . . . . . . .90 5 氣體雙折射效應與真空二色性 95 5.1 橢圓光偏振與偏振光學元件. . . . . . . . . . . . . . 95 5.2 光偏振量測系統. . . . . . . . . . . . . . . . . . . 98 5.3 氣體之雙折射效應. . . . . . . . . . . . . . . . . .102 5.3.1 氮氣. . . . . . . . . . . . . . . . . . . . . . .103 5.3.2 空氣. . . . . . . . . . . . . . . . . . . . . . .133 5.4 光偏振旋轉量測—初步結果 . . . . . . . . . . . . . 133 5.4.1 實驗配置. . . . . . . . . . . . . . . . . . . . .138 5.4.2 數據分析與結果 . . . . . . . . . . . . . . . . . 140 5.5 系統靈敏度. . . . . . . . . . . . . . . . . . . . .148 6 未來展望 153 A Fabry-Perot干涉儀之Jones運算 155 A.1 Fabry-Perot干涉儀之Airy函數 . . . . . . . . . . . .155 A.2 Fabry-Perot干涉儀與內腔雙折射效應 . . . . . . . . .158 A.3 鏡面殘餘雙折射效應之影響. . . . . . . . . . . . . .160 B 電子電路 163 B.1 線圈驅動器. . . . . . . . . . . . . . . . . . . . .163 B.2 差動放大電路. . . . . . . . . . . . . . . . . . . .166 B.3 射頻象限光偵測器. . . . . . . . . . . . . . . . . .168 B.4 解調制電路 . . . . . . . . . . . . . . . . . . . . 174 B.5 迴圈濾波電路. . . . . . . . . . . . . . . . . . . .179 B.6 Unit-Gain Frequency量測電路 . . . . . . . . . . . .183 C 程式 185 C.1 C程式. . . . . . . . . . . . . . . . . . . . . . .185 C.1.1 轉移函數量測程式 . . . . . . . . . . . . . . . . 185 C.1.2 On-line monitoring . . . . . . . . . . . . . . .203 C.1.3 長時間數據預處理程式. . . . . . . . . . . . . . .206 C.2 Matlab程式 . . . . . . . . . . . . . . . . . . . .217 C.2.1 磁鐵轉速偵測. . . . . . . . . . . . . . . . . . .217

    [1] Ni W.-T. 1998 Frontier Tests of QED and Physics of the Vacuum 83, ed. E Zavattini (Sofia: Heron Press); ; and reference there in.
    [2] 倪維斗 1998 雷射測長及其在基本物理實驗、 精密天文觀測和計量標準上的應用 物理雙月刊 20 (5) 572; 及文中參考文獻
    [3] Halpern O. 1933 Phys. Rev. 44 855
    [4] Euler E. 1936, Ann der Phys. (Leipzig), 26 398 ; Heisenberg W. and Euler E. 1936 Zeits. Fur Phys. 98 714
    [5] Bialynicka-Birula Z. and Bialynicki-Birula I. 1970 Phys. Rev. D 2 2341
    [6] Adler S. L. 1971 Ann. Phys. (USA) 67 599
    [7] Iacopini E and Zavattini E 1979 Phys. Lett. B 85 151
    [8] Ni W.-T., Tsubono K., Mio N., Narihara K., Chen S.-C., King S.-K. and Pan S.-S. 1991 Test of quantum electrodynamics using ultra-high sensitive interferometers Mod. Phys. Lett. A 6 3671
    [9] Peccei R. D. and Quinn H. R. 1977 Phys. Rev. Lett. 38 1440
    [10] Sikivie P. 1983 Phys. Rev. Lett. 51 1415; Anselm A. A. 1985 Yad. Fiz. 42 1480; Gasperini M. 1987 Phys. Rev. Lett. 59 396
    [11] Maiani L., Petronzio R. and Zavattini E. 1986 Phys. Lett. B 175 359
    [12] Raffelt G. and Stodolsky L. 1988 Phys. Rev. D 37 1237
    [13] Weinberg S. 1978 Phys. Rev. Lett. 40 233
    [14] Wilczek F. 1978 Phys. Rev. Lett. 40 279
    [15] Kim J. 1979 Phys. Rev. Lett. 43 103
    [16] Dine M. et al 1981 Phys. Lett. 104B 1999
    [17] Shifman M. et al 1980 Nucl. Phys. B 166 493
    [18] Ni W.-T. 1973 A Nonmetric Theory of Gravity, preprint, Montana State University, Bozeman, Montana, USA. The paper is available via
    http://gravity5.phys.nthu.edu.tw/webpage/article4/index.html
    [19] Ni W.-T. 1974 Bull. Am. Phys. Soc. 19 655
    [20] Ni W.-T. 1977 Phys. Rev. Lett. 38 301
    [21] Carroll S.M., Field G.B. and Jackiw R. 1990 Phys. Rev. D 41 1231
    [22] Carroll and Field G.B. 1991 Phys. Rev. D 43 3789
    [23] Ni W.-T. 2005 Chin. Phys. Lett. 22 (1) 33-35
    [24] Ni W.-T. 2005 Int. J. Mod. Phys. D 13 901
    [25] Feng B., Li M., Xia J.-Q., Chen X. and Zhang X. 2006 Phys. Rev. Lett. 96 221302
    [26] Askenazy S., Billette J., Dupre P., Ganau P., Mackowski J., Marquez J., Pinard L., Portugall O., Ricard D., Rikken G.L.J.A., Rizzo C., Trenec G. and Vigue J. 2001 Quantum Electrodynamics and Physics of the Vacuum 115, ed. Cantatore G. (American Institute of Physics)
    [27] Bakalov D. et al 1994 Nucl. Phys. B, Pro. Suppl. 35 180; Bakalov D. et al 1998 Quantum Semiclass. Opt. 10 239; Bakalov D. et al 1998 Hyperfine Interactions 114 103;
    [28] Pengo R. et al 1998 Frontier Test of QED and Physics of the Vacuum 59, ed. E Zavattini (Sofia: Heron Press)
    [29] Zavattini E., Zavattini G., Ruoso G., Polacco E., Milotti E., Karuza M., Gastaldi U., Di Domenico G., Della Valle F., Cimino R., Carusotto S., Cantatore G. and Bregant M. 2006 Experimental Observation of Optical Rotation Generated in Vacuum by a Magnetic Field Phys. Rev. Lett. 96 110406
    [30] 吳誌笙 2002 3.5米真空雙折射實驗原型干涉儀之架設與高精密度偏振檢測 國立清華大學物理系博士論文
    [31] Jeah-Sheng Wu, Wei-Tou Ni and Sheng-Jui Chen 2004 Building a 3.5 m prototype interferometer for the Q & A vacuum birefringence experiment and high-precision ellipsometry Class. Quantum Grav. 21 S1259-S1263
    [32] Cantatore G. et al talk on QED-2005
    http://arachne.spectro.jussieu.fr/QED2005/Talks/Cantatore.pdf
    [33] Rizzo C. et al talk on QED-2005
    http://arachne.spectro.jussieu.fr/QED2005/Talks/Robilliard Rizzo.pdf
    [34] Chen S-J et al talk on QED-2005
    http://arachne.spectro.jussieu.fr/QED2005/Talks/Chen.pdf
    [35] Rabadan R., Ringwald A. and Sigurdson K. 2006 Photon Regeneration from Pseudoscalars at X-Ray Laser Facilities Phys. Rev. Lett. 96 110407
    [36] Chen S-J, Mei H-H and Ni W-T 2006 Ellipsometry noise spectrum, suspension transfer function measurement and closed-loop control of the suspension system in the Q & A experiment Journal of Physics: Conference Series 32 244
    [37] Drever R.W., Hall J.L., Kowalski F.V., Hough J., Ford G.H., Munley A.J. and Ward H. 1983 Laser phase and frequency stabilization using an optical resonator Appl. Phys. B 31 97
    [38] Barton M. A. and Kuroda K. 1994, Ultralow frequency oscillator using a pendulum with crossed suspension wires, Rev. Sci. Instrum. 65 (12) 3775-3779
    [39] Kanda N., Barton M. A. and Kuroda K. 1994, Transfer function of a crossed wire pendulum isolation system, Rev. Sci. Instrum. 65 (12) 3780-3783
    [40] Barton M. A., Kanda N. and Kuroda K. 1996 A low-frequency vibration isolation table using multiple crossed-wire suspensions Rev. Sci. Instrum. 67 (11) 3994
    [41] Tatsumi D., Barton M. A., Uchiyama T. and Kuroda K. 1999 Twodimensional low-frequency vibration attenuator using X pendulums Rev. Sci. Instrum. 70 (2) 1561
    [42] Barton M. A., Uchiyama T., Kuroda K. and Kanda N. 1999 Twodimensional X pendulum vibration isolation table Rev. Sci. Instrum. 70 (4) 2150
    [43] The VIRGO Collaboration (presented by Braccini S.) 2002 The VIRGO suspensions Class. Quantum Grav. 19 1623-1629
    [44] Plissi M. V., Torrie C. I., Husman M. E., Robertson N. A., Strain K. A. and Ward H. 2000 GEO 600 triple pendulum suspension system: Seismic isolation and control Rev. Sci. Instrum. 71 (6) 2539
    [45] Anderson D.Z., Frisch J.C. and Masser C.S. 1984 Mirror reflectometer based on optical cavity decay time Appl. Opt. 23 1238
    [46] Ioannidis Z.K., Radmore P.M. and Giles I.P. 1988 Dynamic response of an all-fiber ring resonator Opt. Lett. 13 422
    [47] Li Z., Stedman G.E. and Bilger H.R. 1993 Asymmetric response profile of a scanning Fabry-Perot interferometer Opt. Commun. 100 240
    [48] Poirson J., Bretenaker F., Vallet M. and Le Floch A. 1997 J. Opt. Soc. Am. B 14 2811
    [49] 董增仁, 倪維斗, 楊文輝, 王錚 2004 Q & A 真空雙折射實驗原型磁體的設計與製作 電工電能新技術 23 (4) 65
    [50] Wang Z., YangW., Song T. and Xiao L. 2004 Design of a 2.3 T Rotating Permanent Dipole Magnet IEEE Transactions on Applied Superconductivity 14 (2) 1264
    [51] Agilent staff, Laser and Optics User’s Manual, Chapter 7
    [52] Franklin G. F., Powell J. D. and Emami-Naeini A., Feedback Control of Dynamic Systems, Third Edition, Addison Wesley, 1994
    [53] Goldstein H., Classical Mechanics, Second Edition, Addison Wesley, 1980
    [54] Ljune L., System Identification: Theory for the User, Englewood Cliffs, NJ: Prentice-Hall Information and System Sciences, 1987 Series
    [55] Marple Jr. S. L., Digital Spectral Analysis with Applications, Englewood Cliffs, NJ: Prentice-Hall
    [56] Morrison E., Meers B.J., Robertson D.I. and Ward H. 1994 Appl. Opt. 33 5037-5040, 5041-5049
    [57] Anderson D.Z. 1984 Alignment of resonant optical cavities Appl. Opt. 23 2944
    [58] Sampas N.M. and Anderson D.Z. 1990 Stabilization of laser beam alignment to an optical resonator by heterodyne detection of off-axis modes Appl. Opt. 29 394
    [59] Kawabe K., Mio N. and Tsubono K. 1994 Automatic alignment-control system for a suspended Fabry-Perot cavity Appl. Opt. 33 5498
    [60] Yariv A. Optical Electronics Fourth edition, Saunders College Publishing, 1991
    [61] Gouy L. G. 1890 Acad. Sci. Paris. 110 1251
    [62] Heinzel G. Ph.D. Thesis, University of Hannover 1999; MPQ Report 243 Feb. 1999
    [63] Graeme J. Photodiode amplifier: op amp solutions McGraw-Hill 1995
    [64] Sigg D. 1996 Wavefront Sensor LIGO Technical Document LIGOT960111-A-D
    [65] Frank L. Pedrotti, S.J. and Leno S. Pedrotti Introduction to Optics Second Edition 1993 Prentice-Hall, Inc.
    [66] Brosseau C., Fundamentals of Polarized Light, JOHNWILEY & SONS, Inc., 1998
    [67] Oppenheim A.V. and Schafer R.W., Discrete-Time Signal Processing, Prentice-Hall, 1989
    [68] Rizzo C., Rizzo A. and Bishop D. M. 1997 The Cotton-Mouton effect in gases: experiment and theory Int. Rev. Phys. Chem. 16 81-111; and the references therein
    [69] Rizzo A. et al 2004 The Cotton-Mouton effect of neon and argon: A benchmark study using highly correlated coupled cluster wave functions J. Chem. Phys. 121 (19) 9461
    [70] Carusotto S., Polacco E., Iacopini E., Stefanini G. and Zavattini E. 1982 Measurement of the magnetic birefringence in oxygen and nitrogen gases Opt. Commun. 42 104
    [71] Cameron R., Cantatore G., Melissinos A. C., Ruoso G., Semertzidis Y., Halama H. J., Lazarus D. M., Prodell A. G., Nezrick F., Rizzo C. and Zavattini E. 1993 Search for nearly massless, weakly coupled particles by optical techniques Phys. Rev. D 47 3707
    [72] Cameron R., Cantatore G., Melissinos A. C., Rogers J., Semertzidis Y., Halama H., Prodell A., Nezrick F. A., Rizzo C. and Zavattini E. 1991 Measurement of the magnetic birefringence of neon gas J. Opt. Soc. Am. B 8 520
    [73] Buckingham A. D., Prichard W. H. and Whiffen D. H. 1967 Magnetic birefringence of some diamagnetic gases Trans. Faraday Soc. 63 1057-1064
    [74] Kling H., Dreier E. and H¨uttner 1983 The diamagnetic-susceptibility anisotropy of O2(^3\Sigma) from the temperature dependence of the Cotton-Mouton effect J. Chem. Phys. 78 4309
    [75] Kling H. and H¨uttner W. 1984 The Temperature dependence of the Cotton-Mouton effect of N2, CO, N2O, CO2, OCS, and CS2 in the gaseous-state Chem. Phys. 90 207-214
    [76] Bregant M., Cantatore G., Carusotto S., Cimino R., Della Valle F., Di Domenico G., Gastaldi U., KaruzaM., Milotti E., Polacco E., Ruoso G., Zavattini E. and Zavattini G. 2004 Measurement of the Cotton-Mouton
    effect in krypton and xenon at 1064 nm with the PVLAS apparatus Chem. Phys. Lett. 392 276-280
    [77] William H. Press, Brian P. Flannery, Saul A. Teukolsky and William T. Vetterling, Numerical Recipes, Cambridge University Press
    [78] Brandi F., Della Valle F., Micossi P., De Riva A.M., Zavatini G., Perrone F., Rizzo C. and Ruoso G. 1998 Cotton-Mouton effect of molecular oxygen: a novel measurement J. Opt. Soc. Am. B 15 1278-1281
    [79] Chauvat D., Le Floch A., Vallet M. and Bretenaker F. 1998 Cotton-Mouton effect measurement with the Fabry-Perot eigenstates App. Phys. Lett. 73 1032-1034
    [80] Horowitz P. and Hill W. 1989 The art of electronics 2nd edition Cambridge University Press

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE