簡易檢索 / 詳目顯示

研究生: 楊瑜民
Yu-Min Yang
論文名稱: 銅基塊狀非晶合金之研究與開發
The Study of Cu-based Bulk Amorphous Alloys
指導教授: 金重勳
Tsung-Shune Chin
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 75
中文關鍵詞: 銅基塊狀非晶合金非晶形成能力銅模噴鑄
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目的為探討及發展二元、三元銅基塊狀非晶合金(BMG),主要分為Cu-Hf-Al、Cu-Y-(M)、Cu-Ti-M (M為合金添加的第三元素)等三個合金系統做討論。
    首先為提升既有Cu-Hf BMG的非晶形成能力。將2 at.% Al元素以全取代的方式添加於高Cu含量之Cu65Hf35 (2 mm) 二元非晶合金,可提升非晶形成能力至直徑約3 mm,合金微結構為不均質非晶相。接著嘗試Cu-Y二元合金,得到非晶與結晶共存的結構,最佳成分為Cu78Y22。進行第三元素的全取代,結果以(Cu78Y22)97Ag3合金有最趨於全非晶1 mm棒材的結果。最後嘗試以Cu-Ti為主的三元合金,最佳結果為Cu50Ti40Zr10合金,非晶棒材可達直徑約1 mm。
    Cu-Y-M三元合金因微結構為非晶與結晶共存,因此為一脆性材料,且耐蝕性質不佳。全非晶Cu-Hf-Al合金系統表現出最佳的機械性質,壓縮破斷強度可達2340 MPa,且1 mm合金有約1 %的塑性變形量。Cu50Ti40Zr10合金於1 N H2SO4 + 0.01 N NaCl溶液中整體腐蝕電流密度值小於10-5 A/cm2,表現出不錯的電化學性質,此合金並同時擁有高達2000 MPa之壓縮破斷強度。


    The purpose of this study was to explore binary and ternary Cu-based bulk metallic glasses (BMG), which were divided into three systems: Cu-Hf-Al, Cu-Y-(M), Cu-Ti-M alloys, where M is an additive element.
    First, high Cu-content binary Cu-Hf BMG modified with Al, (Cu65Hf35)100-xAlx (x= 1, 2, 3, 4, 6) were studied. With only x= 2, the glass-forming ability (GFA) is greatly improved to form bulk glassy rod up to at least 3 mm in diameter. The microstructure consists of inhomogeneous amorphous phases. The Cu-Y binary system was chosen to study the GFA on compositions around the eutectic points and their modification. The microstructure of as-cast Cu-Y rods contained amorphous and crystalline mixture phases. According to the XRD results the best glass forming alloy is Cu78Y22. The further addition of Ag improves the GFA. The composition (Cu78Y22)97Ag3 was very close to form fully 1 mm BMG rod. Finally, we tried to develop the ternary BMGs based on high Cu content Cu-Ti BMG. The best result is the Cu50Ti40Zr10 glassy rod with the diameter at least 1 mm.
    The Cu-Y-M ternary alloys are brittle and poor electrochemical resistance due to their structure that contained amorphous and crystalline phases. Fully amorphous Cu-Hf-Al system showed the best mechanical properties with a compressive fracture strength up to 2340 MPa and a plastic strain up to about 1 % due to the inhomogeneous amorphous phases. Cu50Ti40Zr10 alloy performed low corrosion current density, 10-5 A/cm2, in 1 N H2SO4 + 0.01 N NaCl solution showed excellent electrochemical property, and its compressive fracture strength is up to about 2000 MPa.

    摘要 Ⅰ 總目錄 Ⅲ 圖目錄 Ⅵ 表目錄 Ⅸ 第一章 前言 1 1-1 研究動機 1 1-2 研究目的 2 第二章 文獻回顧 3 2-1非晶質合金 3 2-1-1 非晶質合金的發展 3 2-1-2 非晶質合金的種類 5 2-1-3 非晶質合金的性質 7 2-1-4 非晶質合金的應用 10 2-2 非晶合金形成要素 11 2-2-1 非晶形成能力 11 2-2-2 形成塊狀非晶合金之三大統計法則 13 2-2-3 共晶點 15 2-2-4 原子的固溶與鍵結 15 2-3 銅基塊狀非晶 16 2-3-1 銅基塊狀非晶的發展 16 2-3-2銅基塊狀非晶之熱性質、機械性質比較 16 第三章 實驗方法 19 3-1實驗流程 19 3-1-1 材料系統 20 3-1-2 真空電弧熔煉 22 3-1-3 銅模噴鑄法 23 3-2材料分析 24 3-2-1 XRD相鑑定 24 3-2-2 DTA熱性質分析 25 3-2-3 TEM 微結構分析 25 3-2-4 SEM 表面形貌分析 26 3-2-5 極化曲線量測 26 3-2-6 壓縮試驗 28 3-2-7 維氏(Vickers)硬度試驗 28 第四章 結果與討論 29 4-1 Cu-Hf-Al 合金系統 29 4-1-1 XRD分析 29 4-1-2 DTA熱性質分析 31 4-1-3 TEM微結構分析 35 4-1-4 機械性質分析 37 4-1-5 電化學實驗 39 4-1-6 電化學實驗試片之SEM分析 42 4-2 Cu-Y-(M) 合金 45 4-2-1 Cu-Y二元合金系統XRD分析 45 4-2-2 Cu-Y-M 三元合金系統XRD分析 47 4-2-3 Cu-Y-M合金DTA熱性質分析 50 4-2-4 Cu-Y-M合金TEM微結構分析 51 4-2-5 Cu-Y-M合金機械性質分析 53 4-2-6 Cu-Y-Al合金電化學實驗 54 4-3 Cu-Ti-M 合金系統 55 4-3-1 Cu-Ti-M三元合金系統XRD分析 55 4-3-2 Cu-Ti-Al、Cu-Ti-Zr合金XRD分析 59 4-3-3 Cu-Ti-M合金DTA分析 64 4-3-4 Cu-Ti-Zr合金TEM分析 65 4-3-5 Cu-Ti-M合金機械性質分析 66 4-3-6 Cu-Ti-Zr合金電化學實驗 68 第五章 結論 69 5-1 Cu-Hf-Al合金系統 69 5-2 Cu-Y-(M)合金系統 69 5-3 Cu-Ti-M合金系統 70 5-4 未來研究方向 70 參考文獻 71

    1. W. Klement, R.H. Willens, and P. Duwez, Nature 187, 869 (1960).
    2. H.S Chen, Acta Metall. 22, 1505 (1974).
    3. J. Kramer, Annln Phys. 37, 19 (1934).
    4. A. Bremer, D. E. Couch, and E. K. Williams, J. Res. Natn. Bur. Stand. 44, 109 (1950).
    5. P. Duwez and S.C.H. Lin, J. Appl. Phys. 38, 4096 (1967).
    6. T. Masumoto (Ed.), Materials Science of Amorphous Metals, Ohm, Tokyo (1982).
    7. A.L. Drehman, A.L. Greer, and D. Turnbull, Appl. Phys. Lett. 41, 716 (1982).
    8. A. Inoue, T. Zhang, and T. Masumoto, Mater. Trans. JIM 30, 965 (1989).
    9. A. Inoue, T. Nakamura, N. Nishiyama, and T. Masumoto, Mater. Trans. JIM 33, 937 (1992).
    10. A. Inoue, T. Zhang, N. Nishiyama, K. Ohba, and T. Masumoto, Mater. Trans. JIM 34, 1234 (1993).
    11.A. Inoue, Mater. Trans. JIM 36, 866 (1995).
    12. X.H. Lin and W.L. Johnson, J. Appl. Phys. 78, 6514 (1995).
    13.C.Y. Lin, H.Y. Tien, and T.S. Chin, Appl. Phys. Lett. 86, 162501 (2005).
    14. 鄭振東,非晶質金屬漫談,建宏出版社,1990
    15. A. Inoue, Proc. Japan Acad. 81(B), 156 (2005).
    16. W.H. Wang, C.Domg , and C.H. Shek, Mater. Sci. Eng. R 44, 45 (2004).
    17. Z.F. Zang, G. He, J. Eckert, and L. Schultz, Phys. Rev. Lett. 91, 045505-1 (2003).
    18. M. Telford, Materialstoday, 45 (2004).
    19. Argon, Acta Metall. 27, 47 (1979).
    20.C. A. Schuh and A. C. Lund, Nat. Mater. 2, 449 (2003).
    21.Z.W. Zhu, H.F. Zhang, W.S. Sun, B.Z. Ding, and Z.Q. Hu, Scripta Mater. 54, 1145 (2006).
    22. T. Masumoto, Sci. Rep. RITU A 39, 91 (1994).
    23.J.P. Ghu, H. Wilaya, C.W. Wu, T.R. Tsai, C.S. Wei, and J. Wadsworth, App. Phys. Lett. 90, 034101 (2007).
    24. Y. Li, S.C. Ng, C.K. Ong, H.H. Hng, and T.T. Goh, Scripta Mater. 36, 783 (1996).
    25. A. Inoue, Acta Mater. 48, 279 (2000).
    26. D.R. Uhlmann and H. Yinnon, in Glass: Science and Technology 1 Academic Press, New York, 1 (1983)
    27. Z.P. Lu and C.T. Liu, Acta Mater. 50, 3501 (2002).
    28. F.R. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedema, and A.K. Niessen, Cohesion in metals: transition metal alloys, edited by F.R. de Boer and D.G. Pettifor, Amsterdam North-Holland (1988).
    29. 何聖靜、高莉如,非晶態材料及其應用,機械工業出版社,1987。
    30. C. Li, J. Saida, M. Kiminami, and A. Inoue, J. Non-Cryst. Solids. 261, 108 (2000).
    31.A. Inoue, W. Zhang, T. Zhang, and K. Kurosaka, Acta Mater. 49, 2645 (2001).
    32. A. Inoue, W. Zhang, T. Zhang, and K. Kurosaka, J. Mater. Res. 16, 2836 (2001).
    33. A. Inoue, T. Zhang, K. Kurosaka, and W.Zhang, Mater. Trans. JIM 42, 1800 (2001).
    34. T. Zhang, K. Kurosaka, and A. Inoue, Mater. Trans., JIM 42, 2042 (2001).
    35. A. Inoue and W. Zhang, Mater. Trans., JIM 43, 2921 (2002).
    36. A. Inoue and W. Zhang, J. Mater. Res. 18, 1435 (2003).
    37. A. Inoue and W. Zhang, Mater. Trans., JIM 45, 584 (2004).
    38. D.H. Xu, G. Duan, and W. L. Johnson, Phys. Rev. Lett. 92, 245504 (2004).
    39. G. Duan, D.H. Xu, and W. L. Johnson, Metall. Mater. Trans. 36A, 455 (2005).
    40. CL. Dai, H. Guo, Y. Shen, Y. Li, E. Ma, and J. Xu, Scripta Mater. 54, 1403 (2006).
    41. P. Jia, H. Guo, Y. Li, J. Xu, and E. Ma, Scripta Mater. 54, 2165 (2006).
    42. J. Das, M. B. Tang, K. B. Kim, R. Theissmann, F. Baier, W. H. Wang, and J. Eckert, Phys. Rev. Lett. 94, 205501 (2005).
    43. W. Zhang and A. Inoue, Mater. Trans., JIM 44, 2346 (2003).
    44. D. Wang, Y. Li, B.B. Sun, M.L. Sui, K. Lu, and E. Ma, Appl. Phys. Lett. 84, 4029 (2004).
    45. P. Yu, H.Y. Bai, M.B. Tang, and W.L. Wang, J. Non-Cryst. Solids. 351, 1328 (2005).
    46. J. Eckert, J. Das, K.B. Kim, and F. Baier, Intermetallics 14, 876 (2006).
    47. J. Chen, Y. Zhang, J.P. He, K.F. Yao, B.C. Wei, and G.L. Chen, Scripta Mater. 54, 1351 (2006).
    48.K.B. Kim, J. Das, F. Baier, M.B. Tang, W.H. Wang, and J. Eckert, Appl. Phys. Lett. 88, 051911 (2006).
    49. 葉銘騏,陳順隆,以水冷銅模鑄造銅基塊狀非晶質合金與血液相 容性評估,國立高雄應用科技大學碩士論文,民國94年。
    50. 戴淑媜,胡家榮,銅基非晶質合金粉末之合成及特性檢測,大同大學碩士論文,民國91年。
    51.林俊輝,朱瑾,濺鍍銅基非晶質薄膜的製備與性質分析研究,國立臺灣海洋大學碩士論文,民國93年。
    52.L. Xia, D. Ding, S.T. Shan, and Y.D. Dong, J. Phys.: Condens. Matter. 18, 3543 (2006).
    53.汪建民,材料分析,中國材料科學學會,1998。
    54. 洪敏雄,工程材料實驗 (Ⅰ) -金屬材料實驗,中國材料科學學會,1999。
    55. J.C. Oh, T. Ohkubo, Y.C. Kim, E Fleury, and K. Hono, Scripta Mater. 53, 165 (2005).
    56. M. Naka, K. Hashimoto, and T. Masumoto, J. Non-Cryst. Solids. 30, 29 (1978).
    57. M. K. Tam and C. H. Shek, Mater. Chem. Phys. 100, 34 (2006).
    58. C. L. Qin, W. Zhang, K. Asami, H. Kimura, X. M. Wang, and A. Inoue, Acta Mater. 54, 3713 (2006).
    59. W.N. Myung, L. Battezzati, M. Baricco, K. Aoki, A. Inoue, and T. Masumoto, Mat. Sci. Eng. A 179, 371 (1994).
    60. V.V. Vavilova, Yu.K. Kovneristyi, V.L. Lyubimov, and L.N. Galkin, Inorg. Mater. 24, 636 (1988).
    61.T.B. Massalski, C.G. Woychik, and J. Dutkiewicz, Metall. Trans. A 19, 1853 (1988).
    62.K. Brunelli, M. Dabala, and M. Magrini, J. Appl. Electrochem. 32, 145 (2002).
    63. T. Lin, J. Jiang, X.F. Bian, and Y. Dong, Trans. Nonferrous Met. Soc. China 16, 604 (2006).
    64. P. Villars, A. Prince, and H. Okamoto, Handbook of Tenary Alloy Phase Diagrams, ASM International (1995).
    65. D. Ma, H. Tan, D. Wang, Y. Li, and E. Ma, Appl. Phys. Lett. 86, 191906 (2005).
    66. Q. Wang, J.B. Qiang, Y.M. Wang, J.H. Xia, Z. Lin, X.F. Zhang, and C. Dong, Acta Phys. Sin-Ch. Ed. 55, 378 (2006).
    67. A. Inoue, W. Zhang, T. Zhang, and K. Kurosaka, Mater. Trans., JIM 42, 1149 (2001).
    68. B. Liu and L. Liu, Mat. Sci. Eng. A 415, 286 (2006).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE