簡易檢索 / 詳目顯示

研究生: 王聖琮
Wang, Sheng-Tsung
論文名稱: 一個利用多位元量化器之離散時間2-2強健式雜訊塑型三角積分調變器
A Discrete-Time 2-2 Sturdy-MASH Delta-Sigma Modulator with a Multi-bit Quantizer
指導教授: 謝志成
Hsieh, Chih-Cheng
口試委員: 許雲翔
張順志
Chang, Soon-Jyh
謝秉璇
Hsieh, Ping-Hsuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 64
中文關鍵詞: 強健式雜訊塑型多位元量化器三角積分調變器
外文關鍵詞: Sturdy MASH, Multi-bit quantizer, Delta-Sigma Modulator
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出一個離散時間之強健式雜訊塑型三角積分調變器,有四階雜訊塑型的效果,能大幅降低的量化雜訊。
    所提出的三角積分調變器,利用多迴路系統改善穩定度的問題,如此可以有較好的雜訊塑型效果,以降低量化雜訊並提升效能。迴路系統分為兩級,每一級之迴路濾波器皆為二階,整體系統之迴路濾波器等效為四階,而其每一迴路僅需達到二階迴路濾波器之穩定度需求即可。此外,不同於多級雜訊塑型架構,強健式多級雜訊塑型架構不會有雜訊洩漏導致SNDR降低的問題。此調變器選擇輸入前饋的架構來實現迴路濾波器,如此降低迴路濾波器在內部訊號的大小;並且利用多位元量化器,除了能壓低量化雜訊以達到較好的效能外,也能改善系統穩定度的問題,且能減緩迴路濾波器之線性度需求。在使用強健式雜訊塑型的架構下,此離散時間三角積分調變器的設計能完全消除前級量化雜訊的設計,並提出一改良積分器以降低放大器的規格需求。
    此架構使用90奈米1P6M CMOS製程,在1.042-MHz訊號頻寬及25-MHz取樣頻率之下達到62.2-dB的最高SNDR。此調變器的晶片面積為0.71 um2,並在1伏電源電壓的操作。


    This thesis presents a discrete-time sturdy multi-stage noise-shaping (SMASH) delta-sigma modulator with fourth-order noise-shaping effect to reduce the quantization noise obviously.
    The proposed delta-sigma modulator is composed of two stages with a second-order loop filter in each stage. Hence, it is equivalent to a fourth-order loop filter, but it just need to satisfy the requirement of a second-order loop-filter stability in each loop. The technique not only improves the issue of stability but also achieves more aggressive noise shaping to reduce the in-band quantization noise. In contrast with a multi-stage noise-shaping (MASH) structure, a SMASH one does not suffer from the problem of quantization noise leakage which degrades performance of a delta-sigma modulator. In this proposed modulator, loop filters are implemented by an input-feedforward topology which causes internal nodes lower voltage swings. In addition to reducing quantization noise, it can improve a problem of system stability and relax the requirement on linearity of loop filters by using multi-bit quantizers. In the discrete-time sigma-delta modulator, canceling of the former quantization noise is realized with a SMASH structure, and a modified integrator is proposed to release requirements of opamp specifications.
    The prototype is implemented in 90nm 1P9M CMOS technology, achieving 70-dB peak SNDR over a 10-MHz signal bandwidth at a 240-MHz sampling frequency. The modulator occupies 0.71-um2 core area.

    ABSTRACT II CONTENTS III LIST OF FIGURES VI LIST OF TABLES IX CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 THESIS CONTRIBUTION 3 1.3 THESIS ORGANIZATION 4 CHAPTER 2 BACKGROUND INFORMATION 6 2.1 TOPOLOGY OF ΔΣ MODULATOR 7 2.1.1 Single-Loop Single-Bit ΔΣ Modulator 8 2.1.1.1 Cascade of Integrators with Distributed Feedback (CIFB) 9 2.1.1.2 Cascade of Integrators with Distributed Feedforward (CIFF) 10 2.1.1.3 Cascade of Resonators with Distributed Feedforward (CRFF) 13 2.1.2 Single-Loop Multi-Bit ΔΣ Modulator 15 2.1.3 Multi-Stage Noise-Shaping (MASH) ΔΣ Modulator 17 2.1.4 Sturdy-MASH (SMASH) ΔΣ Modulator 20 2.2 SWITCHED-CAPACITOR INTEGRATOR 23 2.3 SUMMARY 24 CHAPTER 3 SYSTEM-LEVEL DESIGN CONSIDERATIONS 25 3.1 ARCHITECTURE SELECTION 25 3.2 SIGNAL TRANSFER FUNCTION (STF) 25 3.3 TOPOLOGY SELECTION 26 3.4 NOISE TRANSFER FUNCTION (NTF) 27 3.5 GAIN FACTOR 28 3.6 NON-IDEALITIES 29 3.6.1 kT/C Noise 29 3.6.2 Thermal Noise of Opamps 31 3.6.3 Clock jitter 31 3.6.4 Finite Gain of Opamps 32 3.6.5 Finite Bandwidth of Opamps 33 3.6.6 Mismatch of Capacitors 35 3.7 SUMMARY 36 CHAPTER 4 PROPOSED ΔΣ MODULATOR DESIGN 37 4.1 PING-PONG INTEGRATOR 37 4.2 OPERATIONAL AMPLIFIER 38 4.3 SUMMING CIRCUIT 41 4.4 QUANTIZER 42 4.5 DIGITAL CIRCUITS 43 4.5.1 Non-overlapping Clock Generator 43 4.5.2 Clock Divider 43 4.6 CIRCUIT-LEVEL ARCHITECTURE 44 4.7 SIMULATION RESULTS 47 4.7.1 Opamps 47 4.7.2 Quantizers 48 4.7.3 ΔΣ Modulator 49 4.8 SUMMARY 51 CHAPTER 5 CHIP IMPLEMENTATION AND MEASUREMENT 52 5.1 CHIP IMPLEMENTATION 52 5.2 MEASUREMENT ENVIRONMENT SETUP 53 5.3 MEASUREMENT RESULTS 54 5.4 PERFORMANCE SUMMARY AND COMPARISON 56 5.5 SUMMARY 57 CHAPTER 6 CONCLUSIONS 58 6.1 SUMMARY 58 6.2 FUTURE WORK 59

    [1] L. Qi, S.-W. Sin, S.-P. U, F. Maloberti, and R. P. Martins, "A 4.2-mW 77.1-dB SNDR 5-MHz BW DT 2-1 MASH ΔΣ Modulator With Multirate Opamp Sharing," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 10, pp. 2641-2654, Oct. 2017.
    [2] S. Loeda, J. Harrison, F. Pourchet, and A. Adams, "A 10/20/30/40 MHz Feedforward FIR DAC Continuous-Time ΔΣ ADC With Robust Blocker Performance for Radio Receivers," IEEE Journal of Solid-State Circuits, vol. 51, no. 4, pp. 860-870, Apr. 2016.
    [3] M. Park and M. H. Perrott, "A 78 dB SNDR 87 mW 20 MHz Bandwidth Continuous-Time ΔΣ ADC With VCO-Based Integrator and Quantizer Implemented in 0.13 μm CMOS," IEEE Journal of Solid-State Circuits, vol. 44, no. 12, pp. 3344-3358, Dec. 2009.
    [4] Y. Dong et al., "A 930mW CT 1-2 MASH ADC Achieving 69dB-DR over 465MHz-BW in 28nm CMOS," in IEEE ISSCC Dig. Tech. Papers, Jan. 2016, pp. 278-279.
    [5] N. Maghari, S. Kwon, and U.-K. Moon, "74 dB SNDR Multi-Loop Sturdy-MASH Delta-Sigma Modulator Using 35 dB Open-Loop Opamp Gain," IEEE Journal of Solid-State Circuits, vol. 44, no. 8, pp. 2212-2221, Aug. 2009.
    [6] D.-Y. Yoon, S. Ho, and H.-S. Lee, "A Continuous-Time Sturdy-MASH ΔΣ Modulator in 28 nm CMOS," IEEE Journal of Solid-State Circuits, vol. 50, no. 12, pp. 2880-2890, Dec. 2015.
    [7] J. M. de la Rosa, R. Schreier, K.-P. Pun, and S. Pavan, "Next-Generation Delta-Sigma Converters: Trends and Perspectives," IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 5, no. 4, pp. 484-499, Dec. 2015.
    [8] H. Shibata et al., "A DC-to-1 GHz Tunable RF ΔΣ ADC Achieving DR=74 dB and BW=150 MHz at f0=450 MHz Using 550 mW," IEEE Journal of Solid-State Circuits, vol. 47, no. 12, pp. 2888-2897, Dec. 2012.
    [9] S. R. Norsworthy, R. Schreier, and G. C. Temes, Delta-Sigma Data Converters:Theory, Design, and Simulation. New York: Wiley-IEEE Press, 1996.
    [10] M. Ortmanns and F. Gerfers, Continuous-Time Sigma-Delta AD Conversion. The Netherlands: Springer-Verlag Berlin Heidelberg, 2006.
    [11] K. C.-H. Chao, S. Nadeem, W. L. Lee, and C. G. Sodini, "A Higher Order Topology for Interpolative Modulators for Oversampling A/D Converters," IEEE Transactions on Circuits and Systems, vol. 37, no. 3, pp. 309-318, Mar. 1990.
    [12] R. Schreier and G. C. Temes, Understanding Delta-Sigma Data Converters. Piscataway, NJ: Wiley-IEEE Press, 2005.
    [13] J. M. de la Rosa, "Sigma-Delta Modulators: Tutorial Overview, Design Guide, and State-of-the-Art Survey," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 1, pp. 1-21, Jan. 2011.
    [14] P. Witte and M. Ortmanns, "Background DAC Error Estimation Using a Pseudo Random Noise Based Correlation Technique for Sigma-Delta Analog-to-Digital Converters," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, no. 7, pp. 1500-1512, Jul. 2010.
    [15] I. Galton and P. Carbone, "A Rigorous Error Analysis of D/A Conversion with Dynamic Element Matching," IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 42, no. 12, pp. 763-772, Dec. 1995.
    [16] R. T. Baird and T. S. Fiex, "Improved ΔΣ DAC Linearity Using Data Weighted Averaging," in IEEE Int. Symp. Circuits and Systems, vol. 1, May 1995, pp. 13-16.
    [17] R. T. Baird and T. S. Fiez, "Linearity Enhancement of Multibit ΔΣ AD and DA Converters Using Data Weighted Averaging," IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 42, no. 12, pp. 753-762, Dec. 1995.
    [18] J. A. P. Nys and R. K. Henderson, "An Analysis of Dynamic Element Matching Techniques In Sigma-Delta Modulation," in IEEE Int. Symp. Circuits and Systems, May 1996, pp. 231-234.
    [19] K.-D. Chen and T.-H. Kuo, "An Improved Technique for Reducing Baseband Tones in Sigma–Delta Modulators Employing Data Weighted Averaging Algorithm Without Adding Dither," IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 46, no. 1, pp. 63-68, Jan. 1999.
    [20] T.-H. Kuo, K.-D. Chen, and H.-R. Yeng, "A Wideband CMOS Sigma–Delta Modulator With Incremental Data Weighted Averaging," IEEE Journal of Solid-State Circuits, vol. 37, no. 1, Jan. 2002.
    [21] D.-H. Lee and T.-H. Kuo, "Advancing Data Weighted Averaging Technique for Multi-Bit Sigma–Delta Modulators," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 54, no. 10, pp. 838-842, 2007.
    [22] C.-H. Weng, W.-H. Huang, E. Alpman, and T.-H. Lin, "A 13-MHz 68-dB SNDR CTDSM Using SAB Loop Filter and Interpolating Flash Quantizer with Random-Skip IDWA Function in 90-nm CMOS," IEEE Asian Solid-State Circuits Conference, Nov. 2015.
    [23] P. Malcovati, S. Brigati, F. Francesconi, F. Maloberti, P. Cusinato, and A. Baschirotto, "Behavioral Modeling of Switched-Capacitor Sigma-Delta Modulators," IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 50, no. 3, pp. 352-364, Mar. 2003.
    [24] N. Maghari, S. Kwon, G. C. Temes, and U. Moon, "Sturdy MASH ΔΣ modulator," Electronics Letters, vol. 42, no. 22, p. 1269, 2006.
    [25] C. Han, T. Kim, and N. Maghari, "Sturdy-MASH Delta-Sigma Modulator with Noise-Shaped Integrating Quantizer and Dual-DAC DWA," in IEEE Int. Symp. Circuits and Systems, vol. 42, Jul. 2015, pp. 1269-1270.
    [26] R. Schreier, The Delta-Sigma ToolboxVersion 2016.1. Jun. 2016 [Online]. Available: http://www.mathworks.com/.
    [27] C.-Y. Ho, Z.-M. Lee, M.-C. Huang, and S.-J. Huang, "A 75.1dB SNDR, 80.2dB DR, 4th-order Feed-forward Continuous-Time Sigma-Delta Modulator with Hybrid Integrator for Silicon TV-tuner Application," in IEEE Asian Solid-State Circuits Conference, Nov. 2011, pp. 261-264.
    [28] O. Choksi and L. R. Carley, "Analysis of Switched-Capacitor Common-Mode Feedback Circuit," IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 50, no. 12, pp. 906-917, 2003.
    [29] T. Kim, C. Han, and N. Maghari, "A 4th-Order Continuous-Time Delta-Sigma Modulator Using 6-bit Double Noise-Shaped Quantizer," IEEE Journal of Solid-State Circuits, vol. 52, no. 12, pp. 3248-3261, Dec. 2017.
    [30] B. Nowacki, N. Paulino, and J. Goes, "A 1V 77dB-DR 72dB-SNDR 10MHz-BW 2-1 MASH CT ΔΣM," in IEEE ISSCC Dig. Tech. Papers, Jan. 2016, pp. 274-275.
    [31] T. Kim, C. Han, and N. Maghari, "A 7.2 mW 75.3 dB SNDR 10 MHz BW CT Delta-Sigma Modulator Using Gm-C-Based Noise-Shaped Quantizer and Digital Integrator," in IEEE Symp. on VLSI Circuits, Jun. 2015, pp. 258-259.
    [32] Y.-S. Shu, J.-Y. Tsai, P. Chen, T.-Y. Lo, and P.-C. Chiu, "A 28fJConv-Step CT ΔΣ Modulator with 78dB DR and 18MHz BW in 28nm CMOS Using a Highly Digital Multibit Quantizer," in IEEE ISSCC Dig. Tech. Papers, Jan. 2013, pp. 268-269.
    [33] K. Matsukawa, Y. Mitani, M. Takayama, K. Obata, S. Dosho, and A. Matsuzawa, "A Fifth-Order Continuous-Time Delta-Sigma Modulator With Single-Opamp Resonator," IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 697-706, 2010.

    QR CODE