研究生: |
陳柏言 Chen, Po-Yen |
---|---|
論文名稱: |
一、奈米尺度下聚苯胺衍生物薄膜的彈性、 導電性及結構規則程度的關聯性研究 二、透過抗原抗體結合效率提升使奈米線晶片檢測疾病效率提升 1.Correlation between Nanoscale Elasticity, Conductivity, and Structure Order in Functionalized Polyaniline Thin Films 2.Disease antigens detection by Silicon Nanowires with the Efficiency |
指導教授: |
韓建中
Han, Chien-Chung |
口試委員: |
蔡易州
Tsai, Yi-Chou 洪嘉呈 Horng, Jia-Cherng 李志聰 Lee, Jyh-Tsung 白孟宜 Bai, Meng-Yi |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2022 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 95 |
中文關鍵詞: | 聚苯胺 、攪拌時間 、機械性質 、導電程度 、奈米線 、癌症檢測 |
外文關鍵詞: | polyaniline, stirring time, Young's modulus, conductivity, nanowire, cancer screening |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文探討兩大主題。首先是探討聚苯胺含硫烷取代基製成薄膜的彈性膜數(elastic modulus)、載子遷移率(mobility)及橫切結構與不同攪拌時間的關係。聚苯胺利用硫醇進行同步還原與取代反應(CRS,concurrent reduction and substitution)合成聚苯胺含硫烷取代基衍生物。以N-甲基吡咯烷酮(NMP,N-methyl-2-pyrrolidone)作為溶劑,並且在隔絕空氣的環境下以每分鐘150轉攪拌。經歷不同攪拌時間後製成自組裝薄膜,並利用原子力顯微鏡(AFM)、掃描式電子顯微鏡(Scanning Electron Microscope,SEM)及X-射線繞射(X-ray diffraction,XRD)分析測得在不同時間的攪拌下,彈性、結構排列程度、導電程度的變化關係。從掃描式電子顯微鏡(Scanning Electron Microscope,SEM)及X-射線繞射(X-ray diffraction)結果可知:隨著攪拌時間增長,製成的自組裝薄膜橫切面逐漸從孔洞狀、不規則狀變成較為規則及層狀結構。除此之外也同時將原子力顯微鏡測量結果利用Derjaguin-Muller-Toporov (DMT) model得到彈性模數以及導電原子力顯微鏡得到電流與電壓關係圖,並進一步利用Mott-Gurney equation得到載子遷移率。我們發現在不規則狀、孔洞狀的情況下,彈性模數及載子遷移率都相對小,並隨著層狀結構出現而變佳。然而在攪拌過了適當時間,薄膜橫切結構不規則程度又逐漸提升,進而影響成膜後的性質。這些結果應用在調控導電高分子的成膜性質相當有用,尤其在製作過程中就不需要再加入添加劑,成本相對較低廉。可以在未來作為製作高分子薄膜的重要參考。
本論文另一主題是探討利用特定角度的外加電場方向提高癌症檢驗晶片檢測的效率。在這部分實驗裡,以癌胚胎抗原相關細胞黏附分子1 (carcinoembryonic antigen (CEA)-related cell adhesion molecules 1 (CEACAM1))及癌胚胎抗原相關細胞黏附分子5 (carcinoembryonic antigen (CEA)-related cell adhesion molecules 5 (CEACAM5))塗抹於原子力顯微鏡探針。而抗體(anti-CEACAM5,anti-CEACAM1)則是利用液滴塗佈(drop casting)的方式滴在矽晶片上,並利用不同外加電場角度在沉降過程中影響抗體最終固著在矽晶片上的方向。利用原子力顯微鏡測量抗原抗體之間在不同電場角度下的結合力大小,我們發現在特定角度(CEACAM5:225o/270o,CEACAM1:135o/180o)下結合力較大。在此外加電場的角度下,抗體的結合部位將和探針上的抗原結合程度較佳,進而提高檢驗訊號強度及效率。利用矽晶片找出最佳電場角度後,我們製成半導體奈米線元件,將抗體作液滴塗布在奈米線上,同時施加不同外加電場。測量在不同角度接上抗原前後的電流變化量,我們發現在施加特定角度的外加電場時不只是可以觀測出是否接上抗原,變化量也相對較大。將來在癌症預防檢測上這項技術我們認為是有極大的應用機會以及突破。
The studies in this dissertation involve two major topics. The first part investigated the relationships between the elastic modulus, the carrier mobility, and the cross-section morphology of the films cast from the NMP (N-methyl-2-pyrrolidone) solution of butylthio-substituted polyaniline (Pan-SBu) after being stirred for different times. Pan-SBu was synthesized by concurrent reduction and substitution (CRS) method from polyaniline emeraldine base (EB form of Pani) with 1-butanethiol. The NMP solution of Pan-SBu (0.02 M) was prepared by stirring at 150 rpm under N2 atmosphere. Self-assembled Pan-SBu films were cast from the solution after being stirred for different times. Atomic force microscope (AFM), scanning electron microscope, and X-ray diffraction were used to analyze and measure the changes in elasticity, structural arrangement degree, and conductivity vs stirring times. The SEM and X-ray diffraction results together showed that the cross-section of the self-assembled films gradually changed from porous and irregular structures to more regular and laminar layer structures as the stirring time increased. In addition, the Derjaguin-Muller-Toporov (DMT) model was used to obtain the elastic modulus from the atomic force microscope measurement results, and the current-voltage relationship diagram was obtained from the conductive atomic force microscope. Furthermore, carrier mobility was obtained using the Mott-Gurney equation. We found that the elastic modulus and carrier migration rate were relatively low in the case of irregular and porous structures and became better with the appearance of laminar layer structures. However, after an optimal stirring time, the irregularity of the film’s cross-sectional structure gradually increased, which showed detrimental effects to the properties of the film after its appearance. These results provide a simple, economical, and feasible method for manipulating the film-forming properties of a conjugated conductive polymer, like polyaniline.
The second part of this dissertation investigates the effect of applying an electric field in specific angular directions for improving the detection efficiency of cancer screening chip. In this part of the experiment, carcinoembryonic antigen (CEA)-related cell adhesion molecules 1 (CEACAM1) and CEA-related cell adhesion molecules 5 (CEACAM5) were coated on atomic force microscopy probes. The antibodies (anti-CEACAM5, anti-CEACAM1) were first drop-casting on the silicon wafer and following by the application of an electric field at different angles, trying influence the final fixation direction of the antibody on the silicon wafer during the sedimentation process. Using an atomic force microscope to measure the binding force between the antigen drop-casting on the AFM’s probe and the antibody drop-casting on the silicon wafer after being pre-effected by an electric field at different angles, we found that the binding force is more prominent at some specific angles (e.g., CEACAM5: 225o/270o, CEACAM1: 135o/180o). The results further implied that, after being treated with electric field at these specific angles the antibody's binding site can display a better binding efficiency with the antigen, which in turn can further improve the strength and efficiency of the test signal. Basing on the learning of the optimal application angles of electric field with these silicon wafer samples, we have then fabricated a semiconductor nanowire device accordingly. Then, the nanowire device was coated with a droplet of antibodies while applying an external electric field at the specific angles. By measuring the current change, before and after the antigen was connected, at different angles, we found that if antibody coating has been pretreated with an external electric field at the specific angles, not only the antibody can effectively connect with the antigen, but also showed the relatively greater current change. We believe this technology will have significant application opportunities for cancer detection in the future.
1. Khim, D.; Luzio, A.; Bonacchini, G. E.; Pace, G.; Lee, M.-J.; Noh, Y.-Y.; Caironi, M., Uniaxial Alignment of Conjugated Polymer Films for High-Performance Organic Field-Effect Transistors. Advanced Materials 2018, 30 (20), 1705463.
2. Root, S. E.; Savagatrup, S.; Printz, A. D.; Rodriquez, D.; Lipomi, D. J., Mechanical Properties of Organic Semiconductors for Stretchable, Highly Flexible, and Mechanically Robust Electronics. Chemical Reviews 2017, 117 (9), 6467-6499.
3. Fratoddi, I.; Venditti, I.; Cametti, C.; Russo, M. V., Chemiresistive polyaniline-based gas sensors: A mini review. Sensors and Actuators B: Chemical 2015, 220, 534-548.
4. Caruso, F.; Rodda, E.; Furlong, D. N.; Niikura, K.; Okahata, Y., Quartz Crystal Microbalance Study of DNA Immobilization and Hybridization for Nucleic Acid Sensor Development. Analytical Chemistry 1997, 69 (11), 2043-2049.
5. Bracha, D.; Karzbrun, E.; Daube, S.; Bar-Ziv, R., Emergent Properties of Dense DNA Phases toward Artificial Biosystems on a Surface. Accounts of chemical research 2014, 47.
6. Al-Shereiqi, A. S.; Boyd, B. J.; Saito, K., Photo-responsive self-assemblies based on bio-inspired DNA-base containing bolaamphiphiles. Chemical Communications 2015, 51 (25), 5460-5462.
7. Lueking, A.; Cahill, D. J.; Mullner, S., Protein biochips: A new and versatile platform technology for molecular medicine. Drug discovery today 2005, 10 (11), 789-94.
8. Engvall, E.; Perlmann, P., Enzyme-Linked Immunosorbent Assay, Elisa. III. Quantitation of Specific Antibodies by Enzyme-Labeled Anti-Immunoglobulin in Antigen-Coated Tubes 1972, 109 (1), 129-135.
9. Patolsky, F.; Lieber, C. M., Nanowire nanosensors. Materials Today 2005, 8 (4), 20-28.
10. Wu, W.-j.; Huang, H.-y.; Hsu, W.-Y.; Hsu, R.-Q.; Chen, H.-M., Efficiency optimisation of proteins on a chip. Lab on a Chip 2015, 15 (19), 3897-3904.
11. Saxman, A. M.; Liepins, R.; Aldissi, M., Polyacetylene: Its synthesis, doping and structure. Progress in Polymer Science 1985, 11 (1), 57-89.
12. Shirakawa, H.; Ikeda, S., Infrared Spectra of Poly(acetylene). Polymer Journal 1971, 2 (2), 231-244.
13. Ito, T.; Shirakawa, H.; Ikeda, S., Simultaneous polymerization and formation of polyacetylene film on the surface of concentrated soluble Ziegler-type catalyst solution. Journal of Polymer Science: Polymer Chemistry Edition 1974, 12 (1), 11-20.
14. Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J., Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH). Journal of the Chemical Society, Chemical Communications 1977, (16), 578-580.
15. Chiang, C. K.; Druy, M. A.; Gau, S. C.; Heeger, A. J.; Louis, E. J.; MacDiarmid, A. G.; Park, Y. W.; Shirakawa, H., Synthesis of highly conducting films of derivatives of polyacetylene, (CH)x. Journal of the American Chemical Society 1978, 100 (3), 1013-1015.
16. Vernitskaya, T. y. V.; Efimov, O. N., Polypyrrole: a conducting polymer; its synthesis, properties and applications. Russian Chemical Reviews 1997, 66 (5), 443-457.
17. Kovacic, P.; Kyriakis, A., Polymerization of benzene to p-polyphenyl. Tetrahedron Letters 1962, 3 (11), 467-469.
18. Kaneto, K.; Ura, S.; Yoshino, K.; Inuishi, Y., Optical and Electrical Properties of Electrochemically Doped n- and p-Type Polythiophenes. Japanese Journal of Applied Physics 1984, 23 (Part 2, No. 3), L189-L191.
19. Mohilner, D. M.; Adams, R. N.; Argersinger, W. J., Investigation of the Kinetics and Mechanism of the Anodic Oxidation of Aniline in Aqueous Sulfuric Acid Solution at a Platinum Electrode. Journal of the American Chemical Society 1962, 84 (19), 3618-3622.
20. Albuquerque, J. E.; Mattoso, L. H. C.; Balogh, D. T.; Faria, R. M.; Masters, J. G.; MacDiarmid, A. G., A simple method to estimate the oxidation state of polyanilines. Synthetic Metals 2000, 113 (1), 19-22.
21. Stafström, S.; Brédas, J. L.; Epstein, A. J.; Woo, H. S.; Tanner, D. B.; Huang, W. S.; MacDiarmid, A. G., Polaron lattice in highly conducting polyaniline: Theoretical and optical studies. Physical Review Letters 1987, 59 (13), 1464-1467.
22. Sun, Y.; MacDiarmid, A. G.; Epstein, A. J., Polyaniline: synthesis and characterization of pernigraniline base. Journal of the Chemical Society, Chemical Communications 1990, (7), 529-531.
23. Han, C.-C.; Hong, S.-P.; Yang, K.-F.; Bai, M.-Y.; Lu, C.-H.; Huang, C.-S., Highly Conductive New Aniline Copolymers Containing Butylthio Substituent. Macromolecules 2001, 34 (3), 587-591.
24. Han, C.-C.; Yang, K.-F.; Hong, S.-P.; Balasubramanian, A.; Lee, Y.-T., Syntheses and characterizations of aniline/butylthioaniline copolymers: Comparisons of copolymers prepared by the new concurrent reduction and substitution route and the conventional oxidative copolymerization method. Journal of Polymer Science Part A: Polymer Chemistry 2005, 43 (9), 1767-1777.
25. Han, C.-C.; Balakumar, R.; Thirumalai, D.; Chung, M.-T., The different electronic natures displayed by the alkylthio groups in simple and higher conjugated aniline systems. Organic & Biomolecular Chemistry 2006, 4 (18), 3511-3516.
26. Paike, V. V.; Balakumar, R.; Chen, H.-Y.; Shih, H.-P.; Han, C.-C., A Serendipitous C−C Bond Formation Reaction between Michael Donors and Diiminoquinoid Ring Assisted by Quaternary Ammonium Fluoride. Organic Letters 2009, 11 (24), 5586-5589.
27. Dufour, B.; Rannou, P.; Fedorko, P.; Djurado, D.; Travers, J.-P.; Pron, A., Effect of Plasticizing Dopants on Spectroscopic Properties, Supramolecular Structure, and Electrical Transport in Metallic Polyaniline. Chemistry of Materials 2001, 13 (11), 4032-4040.
28. Vilkman, M.; Kosonen, H.; Nykänen, A.; Ruokolainen, J.; Torkkeli, M.; Serimaa, R.; Ikkala, O., Electrical Conductivity Transitions and Self-Assembly in Comb-Shaped Complexes of Polyaniline Based on Crystallization and Melting of the Supramolecular Side Chains. Macromolecules 2005, 38 (18), 7793-7797.
29. Ikkala, O.; ten Brinke, G., Functional Materials Based on Self-Assembly of Polymeric Supramolecules. Science 2002, 295 (5564), 2407-2409.
30. Chandra Trivedi, D.; Kumar Dhawan, S., Investigations on the effect of 5-sulfosalicylic acid on the properties of polyaniline. Synthetic Metals 1993, 58 (3), 309-324.
31. Hopkins, A. R.; Rasmussen, P. G.; Basheer, R. A., Characterization of Solution and Solid State Properties of Undoped and Doped Polyanilines Processed from Hexafluoro-2-propanol. Macromolecules 1996, 29 (24), 7838-7846.
32. Fosong, W.; Jinsong, T.; Lixiang, W.; Hongfang, Z.; Zhishen, M., Study on the Crystallinity of Polyaniline. Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics 1988, 160 (1), 175-184.
33. Jozefowicz, M. E.; Laversanne, R.; Javadi, H. H. S.; Epstein, A. J.; Pouget, J. P.; Tang, X.; MacDiarmid, A. G., Multiple lattice phases and polaron-lattice---spinless-defect competition in polyaniline. Physical Review B 1989, 39 (17), 12958-12961.
34. Scherr, E. M.; MacDiarmid, A. G.; Manohar, S. K.; Masters, J. G.; Sun, Y.; Tang, X.; Druy, M. A.; Glatkowski, P. J.; Cajipe, V. B.; Fischer, J. E.; Cromack, K. R.; Jozefowicz, M. E.; Ginder, J. M.; McCall, R. P.; Epstein, A. J., Polyaniline: Oriented films and fibers. Synthetic Metals 1991, 41 (1), 735-738.
35. Wei, Y.; Jang, G.-W.; Hsueh, K. F.; Scherr, E. M.; MacDiarmid, A. G.; Epstein, A. J., Thermal transitions and mechanical properties of films of chemically prepared polyaniline. Polymer 1992, 33 (2), 314-322.
36. Nagaraja, K. K.; S, P.; P, P.; Telenkov, M.; Kityk, I., Nonlinear optical properties of polyaniline and poly (o-toluidine) composite thin films with multi walled carbon nano tubes. 2017; Vol. 512.
37. Leite, F.; Alves, W.; Mir, M.; Mascarenhas, Y.; S P Herrmann, P.; H C Mattoso, L.; Oliveira, O.; Alves, F.; G Macdiarmid, A., TEM, XRD and AFM study of poly(o-ethoxyaniline) films: New evidence for the formation of conducting islands. 2008; Vol. 936138, p 537-542.
38. Binnig, G.; Quate, C. F.; Gerber, C., Atomic Force Microscope. Physical Review Letters 1986, 56 (9), 930-933.
39. Li, G.; Zhu, R.; Yang, Y., Polymer solar cells. Nature Photonics 2012, 6, 153.
40. Murrell, M. P.; Welland, M. E.; O’Shea, S. J.; Wong, T. M. H.; Barnes, J. R.; McKinnon, A. W.; Heyns, M.; Verhaverbeke, S., Spatially resolved electrical measurements of SiO2 gate oxides using atomic force microscopy. Applied Physics Letters 1993, 62 (7), 786-788.
41. Reyes, D. R.; Iossifidis, D.; Auroux, P.-A.; Manz, A., Micro Total Analysis Systems. 1. Introduction, Theory, and Technology. Analytical Chemistry 2002, 74 (12), 2623-2636.
42. Rusmini, F.; Zhong, Z.; Feijen, J., Protein Immobilization Strategies for Protein Biochips. Biomacromolecules 2007, 8 (6), 1775-1789.
43. Thomas, S. N.; Zhu, F.; Schnaar, R. L.; Alves, C. S.; Konstantopoulos, K., Carcinoembryonic antigen and CD44 variant isoforms cooperate to mediate colon carcinoma cell adhesion to E- and L-selectin in shear flow. J Biol Chem 2008, 283 (23), 15647-15655.
44. Konstantopoulos, K.; Thomas, S. N., Cancer Cells in Transit: The Vascular Interactions of Tumor Cells. Annual Review of Biomedical Engineering 2009, 11 (1), 177-202.
45. Gold, P.; Freedman, S. O., DEMONSTRATION OF TUMOR-SPECIFIC ANTIGENS IN HUMAN COLONIC CARCINOMATA BY IMMUNOLOGICAL TOLERANCE AND ABSORPTION TECHNIQUES. The Journal of Experimental Medicine 1965, 121 (3), 439-462.
46. Perkins, G. L.; Slater, E. D.; Sanders, G. K.; Prichard, J. G., Serum tumor markers. American family physician 2003, 68 (6), 1075-82.
47. Perrett, D., ELECTROPHORESIS. In Encyclopedia of Separation Science, Wilson, I. D., Ed. Academic Press: Oxford, 2000; pp 103-118.
48. Mukherjee, S.; Berger, M. F.; Jona, G.; Wang, X. S.; Muzzey, D.; Snyder, M.; Young, R. A.; Bulyk, M. L., Rapid analysis of the DNA-binding specificities of transcription factors with DNA microarrays. Nature genetics 2004, 36 (12), 1331-9.
49. Hoheisel, J. D., Microarray technology: beyond transcript profiling and genotype analysis. Nature reviews. Genetics 2006, 7 (3), 200-10.
50. Bhushan, B.; Tokachichu, D. R.; Keener, M. T.; Lee, S. C., Morphology and adhesion of biomolecules on silicon based surfaces. Acta Biomaterialia 2005, 1 (3), 327-341.
51. Arya, S. K.; Prusty, A. K.; Singh, S. P.; Solanki, P. R.; Pandey, M. K.; Datta, M.; Malhotra, B. D., Cholesterol biosensor based on N-(2-aminoethyl)-3-aminopropyl-trimethoxysilane self-assembled monolayer. Analytical Biochemistry 2007, 363 (2), 210-218.
52. López-Gallego, F.; Betancor, L.; Mateo, C.; Hidalgo, A.; Alonso-Morales, N.; Dellamora-Ortiz, G.; Guisán, J. M.; Fernández-Lafuente, R., Enzyme stabilization by glutaraldehyde crosslinking of adsorbed proteins on aminated supports. Journal of Biotechnology 2005, 119 (1), 70-75.
53. Betancor, L.; López-Gallego, F.; Hidalgo, A.; Alonso-Morales, N.; Mateo, G. D.-O. C.; Fernández-Lafuente, R.; Guisán, J. M., Different mechanisms of protein immobilization on glutaraldehyde activated supports: Effect of support activation and immobilization conditions. Enzyme and Microbial Technology 2006, 39 (4), 877-882.
54. Sader, J. E.; Chon, J. W. M.; Mulvaney, P., Calibration of rectangular atomic force microscope cantilevers. Review of Scientific Instruments 1999, 70 (10), 3967-3969.
55. Dokukin, M. E.; Sokolov, I., Quantitative Mapping of the Elastic Modulus of Soft Materials with HarmoniX and PeakForce QNM AFM Modes. Langmuir 2012, 28 (46), 16060-16071.
56. Adamcik, J.; Lara, C.; Usov, I.; Jeong, J. S.; Ruggeri, F. S.; Dietler, G.; Lashuel, H. A.; Hamley, I. W.; Mezzenga, R., Measurement of intrinsic properties of amyloid fibrils by the peak force QNM method. Nanoscale 2012, 4 (15), 4426-4429.
57. Cheng, X.; Putz, K. W.; Wood, C. D.; Brinson, L. C., Characterization of Local Elastic Modulus in Confined Polymer Films via AFM Indentation. Macromolecular Rapid Communications 2015, 36 (4), 391-397.
58. Usov, I.; Nyström, G.; Adamcik, J.; Handschin, S.; Schütz, C.; Fall, A.; Bergström, L.; Mezzenga, R., Understanding nanocellulose chirality and structure–properties relationship at the single fibril level. Nature Communications 2015, 6, 7564.
59. Han, D.-H.; Park, S.-M., Electrochemistry of Conductive Polymers. 32. Nanoscopic Examination of Conductivities of Polyaniline Films. The Journal of Physical Chemistry B 2004, 108 (37), 13921-13927.
60. Reid, O. G.; Munechika, K.; Ginger, D. S., Space Charge Limited Current Measurements on Conjugated Polymer Films using Conductive Atomic Force Microscopy. Nano Letters 2008, 8 (6), 1602-1609.
61. Pinto, N. J.; Shah, P. D.; Kahol, P. K.; McCormick, B. J., Dielectric constant and ac conductivity in polyaniline derivatives. Solid State Communications 1996, 97 (12), 1029-1031.
62. Wood, D.; Hancox, I.; Jones, T. S.; Wilson, N. R., Quantitative Nanoscale Mapping with Temperature Dependence of the Mechanical and Electrical Properties of Poly(3-hexylthiophene) by Conductive Atomic Force Microscopy. The Journal of Physical Chemistry C 2015, 119 (21), 11459-11467.
63. Marsden, A. J.; Rochford, L. A.; Wood, D.; Ramadan, A. J.; Laker, Z. P. L.; Jones, T. S.; Wilson, N. R., Growth of Large Crystalline Grains of Vanadyl‐Phthalocyanine without Epitaxy on Graphene. Advanced Functional Materials 2016, 26 (8), 1188-1196.
64. Button, S. W.; Mativetsky, J. M., High-resolution charge carrier mobility mapping of heterogeneous organic semiconductors. Applied Physics Letters 2017, 111 (8), 083302.
65. Wang, R.; Du, L.; Zhang, C.; Man, Z.; Wang, Y.; Wei, S.; Min, C.; Zhu, S.; Yuan, X. C., Plasmonic petal-shaped beam for microscopic phase-sensitive SPR biosensor with ultrahigh sensitivity. Optics letters 2013, 38 (22), 4770-3.
66. Dong, G.-C.; Chuang, P.-H.; Forrest, M. D.; Lin, Y.-C.; Chen, H. M., Immuno-suppressive Effect of Blocking the CD28 Signaling Pathway in T-cells by an Active Component of Echinacea Found by a Novel Pharmaceutical Screening Method. Journal of Medicinal Chemistry 2006, 49 (6), 1845-1854.
67. Xing, J. Z.; Zhu, L.; Jackson, J. A.; Gabos, S.; Sun, X.-J.; Wang, X.-b.; Xu, X., Dynamic Monitoring of Cytotoxicity on Microelectronic Sensors. Chemical Research in Toxicology 2005, 18 (2), 154-161.
68. Sin, M. L. Y.; Mach, K.; Wong, P.-K.; Liao, J., Advances and challenges in biosensor-based diagnosis of infectious diseases. 2014; Vol. 14.
69. Seo, S. M.; Cho, I. H.; Jeon, J. W.; Cho, H. K.; Oh, E. G.; Yu, H. S.; Shin, S. B.; Lee, H. J.; Paek, S. H., An ELISA-on-a-Chip Biosensor System Coupled with Immunomagnetic Separation for the Detection of Vibrio parahaemolyticus within a Single Working Day. Journal of Food Protection 2010, 73 (8), 1466-1473.
70. Han, S.-M.; Cho, J.-H.; Cho, I.-H.; Paek, E.-H.; Oh, H.-B.; Kim, B.-S.; Ryu, C.; Lee, K.; Kim, Y.-K.; Paek, S.-H., Plastic enzyme-linked immunosorbent assays (ELISA)-on-a-chip biosensor for botulinum neurotoxin A. Analytica Chimica Acta 2007, 587 (1), 1-8.
71. Ortiz, M.; Fragoso, A.; O'Sullivan, C. K., Amperometric detection of antibodies in serum: performance of self-assembled cyclodextrin/cellulose polymer interfaces as antigen carriers. Org Biomol Chem 2011, 9 (13), 4770-3.
72. Deng, L.; Norberg, O.; Uppalapati, S.; Yan, M.; Ramstrom, O., Stereoselective synthesis of light-activatable perfluorophenylazide-conjugated carbohydrates for glycoarray fabrication and evaluation of structural effects on protein binding by SPR imaging. Org Biomol Chem 2011, 9 (9), 3188-98.
73. Allsop, T.; Neal, R.; Dvorak, M.; Kalli, K.; Rozhin, A.; Webb, D. J., Physical characteristics of localized surface plasmons resulting from nano-scale structured multi-layer thin films deposited on D-shaped optical fiber. Opt. Express 2013, 21 (16), 18765-18776.
74. Chen, Z.; Huang, Y.; Li, X.; Zhou, T.; Ma, H.; Qiang, H.; Liu, Y., Colorimetric detection of potassium ions using aptamer-functionalized gold nanoparticles. Analytica Chimica Acta 2013, 787, 189-192.
75. Song, G.; Zhou, H.; Gu, J.; Liu, Q.; Zhang, W.; Su, H.; Su, Y.; Yao, Q.; Zhang, D., Tumor marker detection using surface enhanced Raman spectroscopy on 3D Au butterfly wings. Journal of Materials Chemistry B 2017, 5 (8), 1594-1600.
76. Chen, K.-I.; Li, B.-R.; Chen, Y.-T., Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today 2011, 6 (2), 131-154.
77. Cui, Y.; Wei, Q.; Park, H.; Lieber, C. M., Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293 (5533), 1289-92.
78. Hutter, J. L.; Bechhoefer, J., Calibration of atomic-force microscope tips. Review of Scientific Instruments 1993, 64, 1868-1873.
79. Chiu, H.-C.; Koh, K. D.; Evich, M.; Lesiak, A. L.; Germann, M. W.; Bongiorno, A.; Riedo, E.; Storici, F., RNA intrusions change DNA elastic properties and structure. Nanoscale 2014, 6 (17), 10009-10017.
80. Shen, M.-Y.; Li, B.-R.; Li, Y.-K., Silicon nanowire field-effect-transistor based biosensors: From sensitive to ultra-sensitive. Biosensors and Bioelectronics 2014, 60, 101-111.