研究生: |
張修瑀 Chang, Hsiu-Yu |
---|---|
論文名稱: |
三羰基鎝99m(I)標誌人體血清蛋白奈米粒子之製備 Preparation of Tricarbonyl 99mTc(I) Labeled Human Serum Albumin Nanoparticles |
指導教授: |
羅建苗
Lo, Jem-Mau |
口試委員: |
李德偉
高志浩 鍾相彬 Lee, Te-Wei |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 核子工程與科學研究所 Nuclear Engineering and Science |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 33 |
中文關鍵詞: | 人體血清蛋白 、奈米粒子 、粒徑分佈 、放射性標誌 、三羰基鎝99m(I) |
外文關鍵詞: | human serum albumin, nanoparticles, particle size distribution, radiolabeling, 99mTc(I)-tricarbonyl |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在製備人體血清蛋白(Human serum albumin,簡稱HSA)奈米級粒子(Nanoparticles,簡稱NPs)。 藉實質固態腫瘤的高通透性和滯留效應,奈米粒子可傳送至腫瘤。本研究將此HSA-NPs予以標誌放射性同位素核種 99mTc,期發展在臨床上做腫瘤造影診斷之用途。
方法:首先以反溶解技術製得 HSA-NPs ,接著將99mTc 以99mTc(I)-tricarbonyl 的離子態標誌,得99mTc標誌產物,簡稱為 99mTc(I)-tricarbonyl-HSA-NPs。接著藉由粒徑測試和體外穩定度試驗評估此試劑的生物穩定性。
結果:在粒徑測試中,此奈米粒子於製備後至少可保存至兩個月都不會有明顯的聚集現象,粒徑分佈維持在217.9 ± 5.2 nm。在標誌 99mTc後,在室溫放置48小時後,粒徑分佈為 233.3 ± 7.6 nm; 在37°C放置48小時後,粒徑分佈為 234.7 ± 8.2 nm。在體外穩定度試驗證實無論在生理食鹽水或是大鼠血清中,於48小時後99mTc(I)-tricarbonyl-HSA-NPs仍維持約 90% 的放射化學純度。
結論: 本研究已完成人體血清蛋白奈米粒子製備、 99mTc標誌、粒徑測試以及體外穩定度試驗。未來可進行動物實驗加以測試此奈米粒子在腫瘤造影診斷之效用。
This study has attempted to prepare human serum albumin (HSA) nanoparticles (NPs) for targeting solid tumor cells via the enhanced permeability and retention (EPR) effect. HSA-NPs was labeled with 99mTc using the 99mTc(I)-tricarbonyl ion, [99mTc(CO)3(OH2)3]+ as a precursor to prepare as a radiotracer for clinically imaging use.
Methods: HSA-NPs were produced by a desolvation technique. [99mTc(CO)3(OH2)3]+ was prepared and subjected to directly label HSA-NPs. The resulted 99mTc(I)-tricarbonyl labeled HSA-NPs, abbreviated as 99mTc(I)-tricarbonyl-HSA-NPs, was measured for its particle size distribution and in vitro stability.
Results: According to DLS analysis, the HSA-NPs prepared could be preserved without aggregation and kept at the size distribution as 217.9 ± 5.2 nm. After being radiolabeled, the particles were found with size distribution at 233.3 ± 7.6 nm at room temperature and at 234.7 ± 8.2 nm at 37°C after storage for 48 h. The radiochemical purity of 99mTc(I)-tricarbonyl-HSA-NPs could maintain at 90% after incubation either in normal saline and in rat plasma for 48 h.
Conclusion: HSA-NPs was successfully prepared in nanometer scale and could be readily labeled with 99mTc(I)-tricarbonyl ion. The 99mTc labeled HSA-NPs was stable during incubation either in normal saline and in plasma.
1. W.H. De Jong, P.J.A. Borm, “Drug delivery and nanoparticles: applications and hazards”, Int J Nanomed., 3 (2008), pp. 133–149
2. L. Zhang, F.X. Gu, J.M. Chan, A.Z. Wang, R.S. Langer, O.C. Farokhzad, “Nanoparticles in medicine: therapeutic applications and developments”, Clin Pharmacol., 83 (2008), pp. 761–769
3. I. Brigger, C. Dubernet, P. Couvreur, “Nanoparticles in cancer therapy and diagnosis”, Adv Drug Deliv. Rev., 54 (2002), pp. 631–651
4. S. Parveen, R. Misra, S.K. Sahoo, “Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging”, Nanomedicine, 8 (2012), pp. 147–166
5. H. Maeda, “The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting”, Adv Enzyme Regul., 41 (2001), pp. 189–207
6. H. Maeda, G.Y. Bharate, J. Daruwalla, “Polymeric drugs and nanomedicines for efficient tumor targeted drug delivery based on EPR-effect”, Eur J Pharm Biopharm., 71 (2009), pp. 409–419
7. J. Fang, H. Nakamura, H. Maeda, “The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect”, Adv Drug Delivery Rev., 63 (2011), pp. 136–151
8. H. Maeda, “The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting”, Adv Enzyme Regul., 41 (2001), pp. 189-207
9. V.P. Torchilin, “Drug targeting”, Eur J Pharm Sci., 11 (2000), pp. 81–91
10. S.K. Hobbs, W.L. Monsky, F. Yuan, W.G. Roberts, L. Griffith, V.P. Torchilin, R.K. Jain, “Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment”, Proc. Natl. Acad. Sci., 95 (1998), pp. 4607–4612.
11. F. Yuan, M. Dellian, D. Fukumura, M. Leunig, D.A. Berk, V.P. Torchilin, R.K. Jain, “Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size”, Cancer Res., 55 (1995), pp. 3752–3756
12. R. Duncan, “The dawning era of polymer therapeutics”, Nat Rev Drug Discov., 2 (2003), pp. 347-360
13. D. Peer, JM. Karp, S. Hong, O. farokhzad, R. Margalit, R. Langer, “Nanocarriers as an emerging platform for cancer therapy”, Nature Nanotech., 2 (2007), pp. 751-760
14. M. Hirose, A. Tachibana, T. Tanabe, “Recombinant human serum albumin hydrogel as a novel drug delivery vehicle”, Mater Sci Eng., 30 (2010), pp. 664–669.
15. D.C. Carter, J.X. Ho, “Structure of serum albumin”, Adv Protein Chem.,45 (1994), pp. 153–203
16. B. Elsadek, F. Kratz, “Impact of albumin on drug delivery — New applications on the horizon”, J Control Release., 157 (2012), pp. 4–28
17. F. Kratz, “Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles”, J Control Release., 132 (2008), pp. 171–183
18. H. Maeda, J. Wu, T. Sawa, Y. Matsumura, K. Hori, “Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review”, J Control Release, 65 (2000), pp. 271–284.
19. S. Gibaud, M. Demoy, J.P. Andreux, C. Weingarten, B. Gouritin, P. Couvreur, “Cells involved in the capture of nanoparticles in hematopoietic organs”, J Pharm Sci.,85 (1996), pp. 944–950
20. A. Egli, R. Alberto, L. Tannahill, R. Schibli, U. Abram, A. Schaffland, R. Waibel, D. Tourwé, L. Jeannin, K. Iterbeke, P.A. Schubiger, “Organometallic 99mTc-aquaion labels peptide to an unprecedented high specific activity”, J Nucl Med., 40 (1999), pp. 1913-1917.
21. K. Langer, S. Balthasar, V. Vogel, N. Dinauer, H.V. Briesen, D. Schubert, “Optimization of the preparation process for human serum albumin (HSA) nanoparticles”, Int J Pharm., 257 (2003), pp. 169–180
22. A.O. Elzoghby, W.M. Samy, N.A. Elgindy, “Albumin-based nanoparticles as potential controlled release drug delivery systems”, J Control Release, 157 (2012), pp. 168–182
23. I. Migneault, C. Dartiguenave, M.J. Bertrand, K.C. Waldron, “Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking”, Biotechniques, 37 (2004), pp. 798–80
24. M. Rahimnejad, N. Mokhtarian, M. Ghasemi, “Production of protein nanoparticles for food and drug delivery system”, Afr J Biotechnol., 8 (2009), pp. 4738–4743.
25. R. Alberto, R. Schibli, A. Egli, A.P. Schubiger, “A novel organometallic aqua complex of technetium for the labeling of biomolecules: synthesis of [99mTc(CO)3(OH2)3]+ from [99mTcO4]- in aqueous solution and its reaction with a bifunctional ligand”, J Am Chem Soc., 120 (1998), pp. 7987-7988
26. M. Rezaei-Tavirani, S.H. Moghaddamnia, B. Ranjbar, M. Amani, S.A. Marashi, “Conformational study of human serum albumin in pre-denaturation temperatures by differential scanning calorimetry, circular dichroism and UV spectroscopy”, J Biochem Mol Biol., 39 (2006), pp. 530–536
27. G. Wunderlich, A. Drews, J. Kotzerke, “A kit for labeling of [188Re] human serum albumin microspheres for therapeutic use in nuclear medicine”, Appl Radiat Isot, 62 (2005), pp. 915–918