研究生: |
李尚軒 Li, Shang-Xuan |
---|---|
論文名稱: |
超聲輔助磨削之切屑構形分析 A Study on Ultrasonic Assisted Grinding Chip Formation |
指導教授: |
左培倫
Tso, Pei-Lum |
口試委員: |
羅展興
顏丹青 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 超聲輔助磨削 、切屑構形 、接觸弧長 、最大未變形切屑厚度 、碳化鎢 |
外文關鍵詞: | Ultrasonic Assisted Grinding, chip formation, grinding force, material removal rate, tungsten carbide |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
超聲輔助磨削已被證實有助於難削材如碳化鎢等材料的磨削加工,但至今未有一套完整的理論說明超聲輔助磨削的機制為何。本論文由切屑構形為切入點,分析超聲輔助磨削與傳統磨削的切屑構形,建立超聲輔助磨削的幾何切屑構形理論,得到超聲輔助磨削與傳統磨削的切屑在接觸弧長及最大未變形切屑厚度的差異,以及此差異對於磨削加工的影響,並且由切屑構形來說明超聲輔助磨削適用於難削材磨削之原因。最終以碳化鎢以及鋼材進行對照實驗,並以磨削力、移除量、表面粗糙度、切屑分析為判斷依據,驗證此理論的正確性。
Ultrasonic Assisted Grinding(UAG) has been verified that it can be used to grind difficult-to-cut materials such as tungsten carbide efficiently. But there is still not a complete theory to interpret the grinding mechanism of UAG. In this thesis, the chip formation of UAG has been established and compared with the conventional grinding. By the analysis of UAG chip formation and the numerical simulation, we find that the reasons for why UAG can help to grind more efficiently. Finally, we did the experiments to verify the correctness of the chip formation mechanism of UAG with grinding force, surface roughness and material removal rate.
[1] 高鄂 譯,碳化鎢入門,台北市徐氏基金會,民國71年。
[2] W. Lortz, “A Model of The Cutting Mechanism in Grinding,” Wear, Volume 53, Issue 1, March 1979, Pages 115-128.
[3] E.J. Weller著,張瑞慶 譯,Nontraditional Machining Processes 2/e非傳統加工,高立圖書有限公司,1999。
[4] 何業銀,楊明亮,內螺紋加工方法的研究現狀分析,陝西理工學院學報,2012年八月。
[5] 曾超群,超聲振動輔助磨削碳化鎢合金之研究,國立清華大學機械所碩士論文,2011。
[6] 鄭振東 編譯,超音波工程,全華,民國88年。
[7] 楊晨暉,雙層壓電式超音波馬達之研究,國立台灣大學機械工程所碩士論文,2005。
[8] Chandra Nath, M. Rahman and S.S.K. Andrew, “A study on ultrasonic vibration cutting of low alloy steel,” Journal of Materials Processing Technology, Volumes 192–193, 1 October 2007, Pages 159-165.
[9] Toshimichi Moriwaki, Eiji Shamoto, Kenji Inoue, “Ultraprecision Ductile Cutting of Glass by Applying Ultrasonic Vibration,” CIRP Annals - Manufacturing Technology, Volume 41, Issue 1, 1992, Pages 141-144.
[10] E. Uhlmann, G. Spur, “Surface Formation in Creep Feed Grinding of Advanced Ceramics with and without Ultrasonic Assistance,” CIRP Annals - Manufacturing Technology, Volume 47, Issue 1, 1998, Pages 249-252.
[11] 李伯民、趙波 主編,現代磨削技術,機械工業出版社,2003。
[12] G. Spur, S.-E. Holl, “Ultrasonic assisted grinding of ceramics,” Journal of Materials Processing Technology, Volume 62, Issue 4, December 1996, Pages 287-293.
[13] GAO Guofu, KONG Qinghua, ZHAO Bo, LIU Chuanshao, “Research on Plastic Removal Mechanism of Engineering Ceramics Grinding with Ultrasonic Assistance,” International Technology and Innovation Conference, 2006.
[14] S. Ramanath, T. C. Ramaraj, and M. C. Shaw, “What Grinding Swarf Reveals,” CIRP Annals - Manufacturing Technology, Volume 36, Issue 1, 1987, Pages 245-247.
[15] D. M. Pai, E. Ratterman and M. C. Shaw, “Grinding swarf,” Wear, Volume 131, Issue 2, June 1989, Pages 329-339.
[16] Taghi Tawakoli, Bahman Azarhoushang, “Influence of ultrasonic vibrations on dry grinding of soft steel,” International Journal of Machine Tools and Manufacture, Volume 48, Issue 14, November 2008, Pages 1585-1591.
[17] Snoeys R, Peters J, Decneut A, “The significance of chip thickness in grinding,” Annals of the CIRP, 23(2), 227-236, 1974.
[18] Kannapan, S. and Malkin, S., “Effects of Grain Size and Operation Parameters on the Mechanics of Grinding,” Trans. ASME, J. of Eng. for Ind., 94, 1972, pp.833.
[19] 盧志勇,Inconel 718的切屑型態與磨削特性之研究,國立清華大學機械所碩士論文,1993。
[20] Ioan D. Marinescu, W. Brian Rowe, Boris Dimitrov and Ichiro Inasaki, “Tribology of Abrasive Machining Processes,” William Andrew publishing, 2004.
[21] 任敬心,康仁科,史興寬,難加工材料的磨削,國防工業出版社,1999。
[22] Rowe W.B. and X. Chen, “Characterization of the size effect in grinding and the sliced bread analogy,” International Journal of Production Research, 35(3), 887-899.
[23] Graham, D., and Baul, R. M., “An investigation into the mode of metal removal in the grinding processs,” Wear, Vol. 19, 1972, pp. 301-314.
[24] Kannappan, S. and Malkin S., “Effects of grain size and operating parameters on the mechanics of grinding,” Journal of Engineering for Industry, 94, pp.833-842.
[25] M.C. Shaw, “A new theory of grinding,” Proceedings of the International Conference on Science in Industry, Monash University, Australia, pp. 1-16.
[26] Stephen Malkin, “Grinding Technology,” Society of Manufacturing Engineers, 1989.
[27] Ioan D. Marinescu, Mike Hitchiner, Eckart Uhlmann, W. Brian Rowe and Ichiro Inasaki, “Handbook of Machining with Grinding Wheels,” CRC Press, 2006.
[28] 陳熹棣 編譯,高週波基礎理論與應用,全華,1995。
[29] 朱建國,孫小松,李衛,電子與光電子材料,北京:國防工業出版社,2007。
[30] 黃郁珊,超聲振動輔助磨削硬脆材料之研究,國立清華大學機械所碩士論文,2010。
[31] B. Denkena, T. Friemuth, M. Reichstein, H.K. Tönshoff, “Potentials of Different Process Kinematics in Micro Grinding,” CIRP Annals - Manufacturing Technology, Volume 52, Issue 1, 2003, Pages 463-466.
[32] W. Brian Rowe, “Principles of modern grinding technology,” William Andrew, 2009.