簡易檢索 / 詳目顯示

研究生: 蔡宗翰
論文名稱: 應用影像重建技術、數值模擬及流場觀測探討內頸動脈瘤之血液動力特性
Study on the Intra-Aneurysmal Hemodynamics in the Internal Carotid Artery Using Image Reconstruction Method, Numerical Simulation, and Flow Visualization
指導教授: 劉通敏
丁大為
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 123
中文關鍵詞: 三維影像重建數值模擬視流觀測內頸動脈瘤血液動力特性
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 血液動力因子普遍被認為與顱內動脈瘤之形成與破裂有關,然而部分重要的血液動力特性卻難以經由活體量測獲得,且一般體外實驗又因模型過度簡化,導致所得結果無法真實重現動脈瘤內血流情形。因此本文旨在以影像重建技術、數值模擬及視流觀測探討顱內內頸動脈(ICA)瘤之血液動力特性,並說明其與動脈瘤發展和破裂機制之關聯性。研究中利用一序列之MRA斷層影像結合三維重建技術建構出實體動脈瘤結構,並以非結構化網格之有限體積離散方法模擬計算於實驗波形下之瘤內脈動流場,且搭配與重建相近似之體外90°動脈瘤模型視流觀測實驗輔助驗證相關的流場特性,而後為求更逼近真實人體血流情形,進一步以人體ICA波形進行運算。數值方法旨在求解依時性不可壓縮Navier-Stokes方程組,其中時間精度為二階Crank-Nicolson法,空間精度於對流項與擴散項分別採用二階上風法與中央差分法,並搭配SIMPLEC演算法解決壓力與速度耦合問題。計算上,實驗波形與ICA波形脈動流場參數中沃門斯里數(Womersley Number)分別為3.9與4.0,雷諾數變化範圍為300~850與201.8~383.5。計算結果乃透過探討血液動力參數諸如瘤內速度向量場、渦漩結構、流入瘤體流量、瘤壁剪應力與壓力分佈等來呈現瘤內血流動力特性。結果顯示於兩種脈動波形下動脈瘤瘤頂處均存在著局部之剪應力與壓力突升現象,且搭配臨床研究結果更推斷出瘤頂位置之劇烈壓力變化為造成動脈瘤破裂的重要因素。


    目錄 摘要 I 誌謝 II 目錄 III 圖表目錄 VII 符號 XV 第一章 前言 1 1-1 研究動機 1 1-2 文獻回顧 2 1-2-1 臨床研究 2 1-2-2 模型實驗 4 1-2-3 數值模擬 6 1-3 研究目的 9 第二章 研究方法 11 2-1 三維實體動脈瘤重建 11 2-1-1 磁振造影(MRI)技術之簡介 11 2-1-2 三維影像重建 12 2-2 計算模型尺寸 15 2-3 計算模型格點 16 2-4 視流觀測實驗 17 2-4-1 流道系統 17 2-4-2 實驗模型 18 2-4-3 光學與影像擷取系統 18 2-4-4 工作流體與實驗條件 19 2-4-5 實驗誤差 20 第三章 理論分析 21 3-1 基本假設 21 3-1-1 顱內動脈血管之流動現象 21 3-1-2 第一考量參數 22 3-1-3 第二考量參數 23 3-1-4 限制條件 25 3-2 統御方程式 25 3-3 流體參數 27 3-4 邊界條件 27 3-5 起始條件 29 第四章 數值方法與計算模型驗證 30 4-1 有限體積差分法 30 4-2 數值離散法 30 4-2-1 對流-擴散項之差分 30 4-2-2 非穩態項之積分 33 4-2-3 SIMPLEC數值演算法 34 4-2-4 非交錯式網格 38 4-2-5 收斂標準 38 4-3 格點獨立測試 39 4-4 流經長直圓管之數值驗證 40 第五章 結果與討論 45 5-1 體外90°動脈瘤模型之流場觀測 45 5-2 實體重建動脈瘤於實驗波形下之結果 48 5-2-1 動脈瘤內基本流場......................................................48 5-2-2 流入瘤內體積流量與瘤底開口截面流場 51 5-2-3 壁面剪應力 53 5-2-4 壁面壓力 56 5-3 實體重建動脈瘤於ICA波形下之結果 59 5-3-1 動脈瘤內基本流場 59 5-3-2 流入瘤內體積流量與開口截面流場 62 5-3-3 壁面剪應力 63 5-3-4 壁面壓力 65 第六章 結論與未來建議 68 6.1 結論 68 6.2 未來建議 70 參考文獻 71

    Artmann, H., Vonofakos, D., Muller, H. and Grau, H. (1984) Neuroradiologic and neuropatholohic findings with growing giant intracranial aneurysm: Review of the Literature, Surgical Neurology, 21:391-401.
    Bando, K. and Berger, S.A. (2003) Research on fluid-dynamic design criterion of stent used for treatment of aneurysms by means of computational simulation, Computational Fluid Dynamics J., 11(4), 527-531.
    Burleson, A.C., Strother, C.M. and Turitto, V.T. (1995) Computer modeling of intracranial saccular and lateral aneurysms for the study of their hemodynamics, Neurosurgery., 37(4):774-782; discussion 782-784.
    Brownlee, B.D., Tranmer, B.I. , Sevick, R.J., Karmy, G. and Curry, J.C. (1995) Spontaneous thrombosis of an unruptured anterior communicating artery aneurysm, Stroke, 26:1945-1949.
    Cebral ,J.R., Yim, P.J., Löhner, R., Soto, O., Marcos, H. and Choyke, P.L. (2001) New Methods for Computational Fluid Dynamics of Carotid Artery from Magnetic Resosnance Angiography, Proc. SPIE Medical Imaging, San Diego, California, February 2001.
    Chen, Y.M. (2004) 顱內動脈與側向瘤脈動流場之數值模擬,國立清華大學,碩士論文。
    Crawford, T. (1959) Some observations on the pathogenesis and natural history of intracranial aneurysm, J. Neurol. Neurosurg. Psychiatry, 22:259-266.
    Crompton, M.R. (1966) Mechanism of growth and rupture in cerebral. berry aneurysms, Br Med J., 1:1138-1142.
    Crompton, M.R. (1973) The pathology of subarachnoid hemorrhage, J R Coll Physicians Lond, 7:235-237.
    Ferguson, G.G. (1970) Turbulence in human intracranial saccular aneurysms, J Neurosurg., 33(5):485-497.
    Ferguson, G.G. (1972) Physucal factors in the initiation, growth, and rupture of human intracranial saccular aneurysms, J. Neurosurg., 37:666-677.
    Friedman, M.H., Hutchins, G.M., Bargeron, C.B., Deters, T. and Mark, F.F. (1981) Correlation between intimal thickness and fluid shear in human arteries, Atherosclerosis, 39:425-436.
    Fry, D.L. (1968) Acute vascular endothelial changes associated with increased blood velocity gradient, Circ. Res., 22:165-197.
    Gonzalez, C.F., Cho, Y.I., Ortega, H.V. and Moret , J. (1992) Intracranial aneurysms: flow analysis of their origin and progression, AJNR., 13:181-188.
    Hardesty, W.H., Roberts, B., Toole, J.F. and Royster, H.P. (1960) Studies of carotid-artery blood flow in man, N Engl J Med., 263:944-946.
    Hashimoto, T. (1984) Dynamics measurement of pressure and flow velocities in glass and silastic model berry aneurysms, Neurol. Res., 6:22-28.
    Hassan, T., Timofeev, E.V., Saito, T., Shimizu, H., Ezura, M., Tominaga, T., Takahashi, A. and Takayama, K. (2004) Computational replicas: anatomic reconstructions of cerebral vessels as volume numerical grids at three-dimensional angiography, AJNR., 25(8):1356-1365.
    Hoi, Y., Meng, H., Woodward, S.H., Bendok, B.R., Hanel, R.A., Guterman, L.R. and Hopkins, L.N. (2004) Effects of arterial geometry on aneurysm growth: three-dimensional computational fluid dynamics study, J Neurosurg., 101(4):676-681.
    Juan, W.C. (1997) 定性與定量量測不同瘤體角度之側向動脈瘤內流場,國立清華大學,碩士論文。
    Kayembe, K.N., Sasahara, M. and Hazama, F. (1984) Cerebral aneurysms and variations in the circle of willis, Stroke, 15(5):846-850.
    Krayenbuhl, H.A., Yasargil, M.G., Flamm, E.S. and Tew, J.M. (1972) Micro-surgical treatment of intracranial saccular aneurysm, J Neurosurg., 37:678-686.
    Ku, D.N., Giddens, D.P., Zarins, C.K. and Glagov, S. (1985) Pulsatile flow and atherosclerosis in the human carotid bifurcation: positive correlation between plaque location and oscillating shear stress, Atherosclerosis, 5:293-302.
    Liepsch, D.W., Steiger, H.J., Poll A. and Reulen H.J. (1987) Hemodynamic stress in lateral saccular aneurysms, Biorheology., 24(6):689-710.
    Liou, T.M., Chang, W.C. and Liao, C.C. (1997a) LDV measurements in lateral model aneurysms of various sizes, Experiments in Fluids, 23:317-324.
    Liou, T.M. and Liao, C.C. (1997b) Flowfields in lateral aneurysm arising from parent vessels with different curvatures using PTV, Experiments in Fluids, 23:288-298.
    Liou, T.M. and Liao, C.C. (1997c) PTV study of the womersley number effects on pulsatile flow in a lateral aneurysm model, Proceedings of ASME Fluids Engineering Division Summer Meeting, Vancouver, Canada.
    Liou, T.M., Li, Y.C. and Juan, W.C. (2006a) Numerical and experimental studies on pulsatile flow in aneurysms arising laterally from a curved parent vessel at various angles, J Biomechanics (In press).
    Liou, T.M., Ting, T.W., Tsai, C.H., Wang, T.C., Ou, Y.C., Li, Y.C. and Luo, C.B. (2006b) Numerical study on pulsatile hemodynamics of the supraclinoid internal carotid artery aneurysms – image reconstruction and flow visualization, The 13th National Computational Fluid Dynamics Conference, Taipei, Taiwan, R.O.C.
    Löw ,M., Perktold, K. and Raunig, R. (1993) Hemodynamics in rigid and distensible saccular aneurysms: a numerical study of pulsatile flow characteristics, Biorheology., 30(3-4):287-298.
    Monte,S.M., Moore, G.W., Monk, M.A. and Hutchins G.M. (1985) Risk factors for the development and rupture of intracranial berry aneurysms, Am J Med., 78(6 Pt 1):957-964.
    Moore, J.E., Xu, C., Glagov, S., Zarins, C.K. and Ku, D.N. (1994) Fluid wall shear stresss measurements in a model of human abdominal aorta: oscillatory behavior and relationship to atherosclerosis, Atherosclerosis, 110:225-240.
    Niimi, H., Kawano, Y. and Sugit, I. (1984) Structure of blood flow through a curved vessel with an aneurysm. Biorheology., 21:603-615.
    Nichols, W. and O’Rourke, M. (1990) McDonald’s flow in arteries, Lea & Febiger, Philadelphia, London.
    Patankar, S.V. (1980) Numerical heat transfer and fluid flow, Hemisphere/McGraw-Hill, Washington, 1090-1093.
    Perktold, K., Perter, R. and Resch, M. (1989) Pulsatile non-Newtonian blood flow simulation through a bifurcation with an aneurysm, Biorheology., 26(6):1011-1030.
    Rhie, C. M., and Chow, W. L. (1983) Numerical study of the turbulent flow past an airfoil with trailing edge separation, AIAA J., 21(11): 1525–1532.
    Sacco, R.L., Wolf, P.A., Bharucha, N.E., Meeks, S.L., Kannel, W.B., Charette, L.J., McNamara, P.M., Palmer, E.P. and D'Agostino, R. (1984) Subarachnoid and intracerebral hemorrhage: natural history, prognosis, and precursive factors in the Framingham Study, Neurology., 34(7):847-854.
    Sahs, A.L. (1966) Observations on the pathology of saccular aneurysms, J. Neurosurg., 24:792-806.
    Sekhar, L.N. and Heros, R.C. (1981) Origin, growth, and rupture of saccular aneurysms: a review, Neurosurgery., 8(2):248-260.
    Steiger, H.J. and Reulen, H.J. (1986) Low frequency flow fluctuations in saccular aneurysms, Acta Neurochir (Wien), 83(3-4):131-137.
    Steiger, H.J., Poll, A., Liepsch, D. and Reulen, H.J. (1987a) Basic flow structure in saccular aneurysms: a flow visualization study, Heart Vessels. , 3(2):55-65.
    Steiger, H.J., Poll, A., Liepsch, D. and Reulen, H.J. (1987b) Hemodynamic stress in lateral saccular aneurysms, Acta Neurochir., 86:98-105.
    Steiger, H.J., Liepsch, D.W., Poll, A. and Reulen, H.J. (1988) Hemodynamic stresss in terminal saccular aneurysms: a laser-Doppler study, Heart Vessels., 4(3):162-169.
    Steinman, D.A., Milner, J.S., Norley, C.J., Lownie, S.P. and Holdsworth, D.W. (2003) Image-based computational simulation of flow dynamics in a giant intracranial aneurysm, AJNR., 24(4):559-566.
    Strother, C.M., Graves, V.B.and Rappe, A. (1992) Aneurysm hemodynamics: an experimental study, AJNR., 13(4):1089-1095..
    Sundt, T.M. and Whisnant, J.P. (1978) Sunarachnoid hemorrhage from intracranial aneurysms. Surgical management and natural history of disease, N Engl J Med., 229:116-122.
    Suzuki, J. and Ohara, H. (1978) Clinicopathological study of cerebral aneurysms: origin, rupture, repair, and growth, J Neurosurg., 48(4):505-514.
    Tateshima, S., Vinuela, F., Villablanca, J.P., Murayama, Y., Morino, T., Nomura, K. and Tanishita, K. (2003) Three-dimensional blood flow analysis in a wide-necked internal catery-ophthalmic artery aneurysm, J Neurosurg., 99:526-533
    Taylor, C.L., Yuan, Z., Selman, W.R., Ratcheson, R.A. and Rimm, A.A. (1995) Cerebral arterial aneurysm formation and rupture in 20,767 elderly patients: hypertension and other risk factors, J Neurosurg., 83(5):812-819.
    Toftdahl, D.B., Torp-Pedersen, C., Engel, U.H., Strandgaard, S. and Jespersen, B. (1995) Hypertension and left ventricular hypertrophy in patients with spontaneous subarachnoid hemorrhage, Neurosurgery., 37(2):235-239; discussion 239-240.
    Tognetti, F., Limoni, P. and Testa, C. (1983) Aneurysm growth and hemodynamic stress. Surg Neurol., 20(1):74-78.
    Van Doormal, J.P. and Raithby, G.D. (1984) Enhancements of the SIMPLE method for predicting incpmpressible fluids flows, Numer. Heat Transfer, 7:147-163.
    Womersley, J.R. (1955) Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known, J Physical., 127(3):553-563.
    Yasargil, M.G. and Fox, J.L. (1975) The microsurgical approach to intracranial aneurysms, Surg. Neurol., 3:7-14.
    Zarins, C.K., Gidden, D.P., Bharadvaj, B.K., Scottiurai, V.S., Mabon, R.F. and Glagov, S. (1983) Carotid bifurcateion atherosclerosis: quantitative correlation of plague localization with flow velocity profiles and wall shear stress, Circulation Research, 53:502-514.
    行政院衛生署:中華民國公共衛生概況。行政院衛生署,2006。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE