研究生: |
葉伯壽 Yip, Bak-Sau |
---|---|
論文名稱: |
酸鹼度與鹽度對抗菌胜肽功能影響 Effects of pH and Salinity on the Antimicrobial Peptides |
指導教授: | 程家維 |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生命科學系 Department of Life Sciences |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 59 |
中文關鍵詞: | 抗菌胜肽 、酸鹼度 、鹽份濃度 |
外文關鍵詞: | antimicrobial peptide, pH value, salinity |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著微生物對抗生素藥物的抗藥性發展, 抗菌性胜肽的開發及研究,是一項重要而嚴肅的課題。從許多生物天生的防禦機制中發現的抗菌胜肽對細菌與黴菌的抑制作用,提供了一個有效而新穎的方式。然而抗菌胜肽處於不同酸鹼度及不同鹽度的環境對微生物的抗菌效果,會影響抗菌性胜肽的殺菌效果,限制臨床使用的可行性。本研究是針對序列為Ac-KWRRWVRWI-NH2富含色氨酸 (Trp-rich) 的胜肽Pac-525,D-Nal-Pac-525及另一富含組氨酸的 胜肽 P113 (AKRHHGYKRKFH - NH2 ),對格蘭氏陽性(Gram positive),格蘭氏陰性(Gram negative)細菌及真菌(fungus)的抗菌效用進行研究。本研究使用核磁共振儀來測定P-113結合擬態的膜SDS微膜 micelles□之結構,同時利用螢光光譜儀與圓二色譜來探討抗菌胜肽在膜環境的特性與穿透能力。本研究結果發現酸鹼度及不同鹽份濃度對P-113及Pac-525的效能有嚴重影响,但酸鹼度及不同鹽份濃度對D-Nal的影響有限。
1. Allen, T. M. (ed.). 1984. Calcein as a tool in liposome methodology. CRC Press.
2. Andreu, D., and Rivas, L., 1998. Animal antimicrobial peptides: an overview. Biopolymers 47:415-433.
3. Bals, R., and Wilson, J. M.. 2003. Cathelicidins - a family of multifunctional antimicrobial peptides. Cell Mol. Life Sci. 60:711-720.
4. Chan, D. I., Prenner, E. J., and Vogel, H. J., 2006. Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action. Biochim. Biophys. Acta 1758:1184-1202.
5. Epand, R. M., and Vogel,H. J., 1999. Diversity of antimicrobial peptides and their mechanisms of action. Biochim. Biophys. Acta 1462:11-28.
6. Ganz, T. 2003. Defensins: antimicrobial peptides of innate immunity. Nature Rev. Immunol. 3:710-720.
7. Hancock, R. E. W., and Patrzykat, A., 2002. Clinical development of cationic antimicrobial peptides: from natural to novel antibiotics. Curr. Drug. Targets infect. disorders 2:79-83.
8. Helmerhorst, E. J., Oppenheim, F. G., Choi, L., Cheng, J. W., and Reiner, N. E., 2007. Evaluation of a new host-derived synthetic antifungal peptide (PAC-113) in the treatment of oral candidiasis. International Meeting on Antimicrobial Chemotherapy in Clinical Practice (ACCP) Italy:Poster.
9. Kulon, K., Valensin, D., Kamysz, W., Valensin, G., Nadolski, P., Porciatti, E., Gaggelli, E., andKozlowski, H., 2008. The His-His sequence of the antimicrobial peptide demegen P-113 makes it very attractive ligand for Cu2+. J. Inorg. Biochem. 102:960-972.
10. Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R., and Thornton, J. M., 1996. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8:477-486.
11. Rothstein, D. M., Spacciapoli, P., Tran, L. T., Xu, T., Roberts, F. D.,. Dalla Serra, M., Buxton, D. K., Oppenheim, F. G., andFriden. P., 2001. Anticandida activity is retained in P-113, a 12-amino-acid fragment of histatin 5. Antimcrob. Agents Chemother. 45:1367-1373.
12. Tossi, A., Sandri, L., and Giangaspero, A., 2000. Amphipathic, a-helical antimicrobial peptides. Biopolymers 55:4-30.
13. Wei, S. Y., Wu, J. M., Kuo, Y. Y., Chen, H. L., Yip, B. S., Tzeng, S. R., and Cheng, J. W., 2006. Solution structure of a novel tryptophan-rich peptide with bidirectional antimicrobial activity. J. Bacteriology 188:328-334.
14. Wiseman, T., Williston, S., Brandts, J. F., and Lin, L. N., 1989. Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal. Biochem. 179:131-137.
15. Wu, J. M., Wei, S. Y., Chen, H. L., Weng, K. Y., Cheng, H. T., and Cheng, J. W., 2007. Solution structure of a novel D-naphthylalanine substituted peptide with potential antibacterial and antifungal activities. Biopolymers 88:738-745.
16. Wuthrich, K., 1986. NMR of Proteins and Nucleic Acids. John Wiley & Sons, New York, USA.
17. Zasloff, M., 2002. Antimicrobial peptides of multicellular organisms. Nature 415:389-395.