簡易檢索 / 詳目顯示

研究生: 黃怡霖
Yi-Lin Huang
論文名稱: 氧化鎵釓-砷化鎵界面之熱力學穩定性研究
Thermodynamic stability of Ga2O3(Gd2O3)/GaAs interface
指導教授: 洪銘輝
Minghwei Hong
周立人
Li-Jen Chou
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 80
中文關鍵詞: 分子束磊晶砷化鎵熱力學穩定性閘極氧化層
外文關鍵詞: molecular beam epitaxy, GaAs, thermodynamic stability, gate dielectric
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此論文中,氧化鎵釓/砷化鎵(Ga2O3(Gd2O3)/GaAs)異質磊晶被加熱到780□C。此高溫回火的目的是為了活化佈置的離子。利用X光反射率(x-ray reflectivity)、及高解析度穿透式電子顯微鏡 (high-resolution transmission electron microscopy) 可得知試片在超高真空下回火仍然保持非常陡峭的界面,並且界面粗糙度小於0.2奈米(nm)。此氧化層被加熱到780□C仍然是非結晶態,這個結果對製程的需求來講是一個非常重要的參數。利用電流-電壓(current-voltage)和電容-電壓 (capacitance-voltage)量測得知此介電層在砷化鎵 (GaAs)上有極低的漏電流(10-8 to 10-9 A/cm2)、高介電常數 (15),和非常低的界面態密度 (Dit)。此實驗結果顯示在升上高溫回火後閘極介電層和砷化鎵中間仍然具有非常平滑的界面。這個結果能確認氧化層與砷化鎵之間能夠維持低的界面態密度並且能確保MOSFET中高載子遷移率之通道。


    Ga2O3(Gd2O3)/GaAs heterostructures have been annealed up to ~780□C. Studies using x-ray reflectivity and high-resolution transmission electron microscopy have shown that the samples annealed under ultra high vacuum(UHV) have maintained smooth and abrupt interfaces with the interfacial roughness being less than 0.2 nm. The oxide remains as amorphous, an important parameter for device consideration. Current-voltage and capacitance-voltage measurements have shown low leakage currents (10-8 to 10-9 A/cm2), a high dielectric constant of 15, and a low interfacial density of states (Dit) between gate dielectrics and GaAs. The attainment of a smooth interface between the gate dielectric and GaAs, even after high temperature annealing for activating implanted dopant, is a must to ensure the low Dit and to maintain a high carrier mobility in the channel of the metal-oxide-semiconductor field-effect- transistor (MOSFET).

    Abstract (Chinese) Ⅰ Abstract (English) Ⅱ Acknowledgements Ⅲ Figure Captions Ⅵ Table CaptionsⅩ Ⅰ 1. Introduction 1 1.1 Background 1 1.2 GaAs properties 3 1.3 The development of dielectric film on GaAs 7 1.4 Drawbacks of previous approaches for before e-mode MOSFETs process 11 2.Theory and Instrumentation 16 2.1 multi-chambers MBE system 16 2.1.1 MBE system16 2.1.2 RHEED17 2.1.3 RGA21 2.2 Fundamentals of the metal-oxide –semiconductor (MOS) 23 2.2.1 Energy band diagrams and C-V characteristic of MOS diode structure 23 2.2.2 Fermi level pinning 27 2.2.3 Charges in the film 29 2.2.4 Terman method 31 2.3 Ga2O3(Gd2O3)/GaAs heterostructure interface 33 2.4 Instrumentation 37 2.4.1 X-ray reflectivity (XRR) 37 2.4.2 Transmission electronic microscope (TEM) 38 2.4.3 Atomic force microscope (AFM) 40 3.Experimental Procedure 42 3.1 Oxide growth 42 3.2 in-situ thermal process 45 3.3 ex-situ thermal process 46 4.Results and discussion 48 4.1 Structural and chemical properties 48 4.2 Electrical properties 61 5.Conclusions 73 6.References 75

    Chapter 1 References

    1. International Technology Roadmap for Semiconductors, Semiconductor Industry Association, 2001.
    2. “Semiconductor-insulator interfaces”, M. Hong, C. T. Liu, H. Reese, and J. Kwo in “Encyclopedia of Electrical and Electronics Engineering”, V.19, pp. 87-100, Ed. J. G. Webster, Published by John Wiley & Sons, New York, 1999, and references therein.
    3. “Phys. & Chem. of III-V Compound Semiconductor Interfaces”, Ed. C. W. Wilmsen, Plenum, New York, 1985.
    4. M. Hong, M. Passlack, J. P. Mannerts, J. Kwo, S. N. G. Chu, N. Moriya, S. Y. Hou, and V. J. Fratello, J. Vac. Sci. Technol. B, 14, 2297, 1996.
    5. M. Passlack, M. Hong, J. P. Mannaerts, J. Kwo, R. L. Opila, S. N. G. Chu, N. Moriya, and F. Ren, IEEE Transaction of Electron Devices, 44 No. 2, 214-225, 1997.
    6. F. Ren, M. Hong, W. S. Hobson, J. M. Kuo, J. R. Lothian, J. P. Mannaerts, J. Kwo, S. N. G. Chu, Y. K. Chen, and A. Y. Cho,, IEEE Int’l Electron Devices Meeting (IEDM) Technical Digest, p.943, 1996, and also in Solid State Electronics, 41 (11), 1751, 1997.
    7. P. Ye, G.. Wilk, B. Yang, J. Kwo, S. Chu, S. Nakahara, H. Gossmann, J. Mannaerts, M. Hong, K. Ng, and J. Bude, Applied Physics Letters, 83, 1, July 2003
    8. C. Y. Chang, Francis Kai, GaAs High Speed Devices, Wiley, 1994
    9. Ralph Williams, Modern GaAs Processing Methods, 1990
    10. S. M. Sze, Semiconductor Devices Physics and Technology, 2nd Edition, Wiley,
    11. John G. Webster, Wiely Encyclopedia of Electrical and Electronics Engineering
    12. K. Navratil, I. Ohlidal, and F. Lukes, Thin solid Films, 56, 163, 1979
    13. G. P. Schwartz, Thin Solid Films, 103, 3, 1983
    14. C. Wilmsen, J. Vac. Sci. Technol., 19(3), 279, 1981
    15. W. T. Tsang, Applied Physics Letters, 33, 429, 1978
    16. J. Dalesasse et al., Applied Physics Letters, 57, 2844, 1990
    17. E. Chen, N. Holonyak, Jr., Maranowski, Applied Physics Letters, 66, 2688, 1995
    18. A. Revesz et al., J. Amer. Ceram. Soc., 46, 606, 1963
    19. O. Weinreich, J. Appl. Phys., 37, 2924, 1966
    20. S. Ingrey et al., J. Vac. Sci. Technol. A, 4, 637, 1985
    21. T. Sawada et al. Jpn. J. Appl Phys., 26, L1871, 1987
    22. J. Alay et al., J. Appl. Phys, 77, 3010, 1995
    23. Becke et al., Solid State Electron., 8, 812, 1965
    24. Freeouf et al., Applied Physics Letters, 57, 1919, 1990
    25. Callegari et al., Applied Physics Letters, 54, 332, 1989
    26. Aydil et al., J. Vac. Sci. Technol. B, 11, 195, 1993
    27. S. Yokoyama et al., Surf. Sci., 86, 835, 1979
    28. Y. H. Jeong et al., IEEE EDL, 15 251, 1994
    29. T. S. Lay, W. D. Liu, M. Hong, J. Kwo, and J. P. Mannaerts, Electronics Letters, Vol. 37, No. 9, 595, 2001.
    30. P. D. Ye, G. D. Wilk, B. Yang, S.N.G. Chu, K.K. Ng, J. Bude, Solid state Electronics, 49, 790, 2005
    31. M. Hong, Y. C. Chang et al., unpublished results
    32. Y. C. Wang, M. Hong, J. M. Kuo, J. P. Mannaerts, J. Kwo, H. S. Tsai, J. J. Krajewski, J. S. Weiner, Y. K. Chen, and A. Y. Cho, Mat. Res. Soc. Symp. Proc. Vol. 573, 219, 1999.
    33. M. Hong, Z. H. Lu, J. Kwo, A. R. Kortan, J. P. Mannaerts, J. J. Krajewski, K. C. Hsieh, L. J. Chou, and K. Y. Cheng, Appl. Phys. Lett. 76 (3), 312, 2000.

    Chapter 2 References
    1. M. A. Herman, H. Sitter, Molecular Beam Epitaxy Fundamentals and Current Status, Sringer-Verlag, 1989
    2. Wolfgang Braun., “Applied RHEED: reflection high-energy electron diffraction during crystal growth”, Springer, 1999
    3. A. Ohtake, et al. PRL 93, 266101, 2004
    4. V. P. LaBella et al., PRL 83, 2989, 1999
    5. Raymond E. March and Richard J. Hughes ; with a historical review by John F.J. Todd., “Quadrupole storage mass spectrometry”, Wiley, 1989
    6. Donald A. Neamen, “Semiconductor physics and devices : basic principles”, McGraw-Hill, 2003
    7. DIETER K. SCHRODER, “semiconductor material and device characterization”, Wiley
    8. D. L. Lile, in C. W. Wilmsen (ed), Physics and Chemistry of Ⅲ–ⅤCompound Semiconductor Interfaces, New York, Plenum, 1985, p. 332
    9. H. T. Lue, C. Y. Liu, and C. Y. Tseng, IEEE Electronic Device Letters, 23, 553, (2002)
    10. W. E. Spicer, et al., J. Vac. Sci. Technol. 15, 1422 (1979)
    11. W. E. Spicer, et al., J. Vac. Sci. Technol. B, 6, 1245, 1988)
    12. M. J. Hale, et al., Journal of Chemical Physics, 119, 6719, 2003
    13. L. M. Terman, et al., Solid-State Electron. 5, 285-299, 1962
    14. M Hong, Z. H. Lu, J. Kwo, A. R. Kortan, J. P. Mannaerts, J. J. Krajewski, K. C. Hsieh, L. J. Chou, and K. Y. Cheng, Applieed Physics Letters 76, 312, 2000
    15. Ishan Barin, “Thermochemical data of pure substances”, 3rd, Weinheim, 1995
    16. J. Kwo, D. W. Murphy, M. Hong, R. L Opila, J. P. Mannaerts, A. M. Sergent and R. L. Masaitis, 75, 1116, 1999
    17. T. S. Lay, M. Hong, J. Kwo, J. P. Mannaerts, W. H. Hung, D. J. Huang, Solid-State Electronics 45, 1679-1682, 2001
    18. H. Y. Lee and T. B. Wu, J. Mater. Res. 12, 3165, 1997.
    19. L. G. Parratt, Phys. Rev. 95, 359, 1954.
    20. D. K. Bowen and B. K. Tanner, Nanotechnology, 4, 175, 1993.
    21. S. K. Sinha, E. B. Sirota, S. Garoff and H. B. Stanley, Phys. Rev. B 38, 2297, 1988.

    Chapter3 References
    1. M. Passlack, M. Hong, J. P. Mannaerts, J. Kwo, R. L. Opila, S. N. G. Chu, N. Moriya, and F. Ren, IEEE Transaction of Electron Devices, 44 No. 2, 214-225, 1997

    Chapter4 References
    1. M Hong, Z. H. Lu, J. Kwo, A. R. Kortan, J. P. Mannaerts, J. J. Krajewski, K. C. Hsieh, L. J. Chou, and K. Y. Cheng, Applieed Physics Letters 76, 312, 2000
    2. D. N. McIlroy, et al. Physics Review Letters 76,15 1996
    3. H. T. Lue, C. Y. Liu, and C. Y. Tseng, IEEE Electronic Device Letters, 23, 553, (2002)
    4. T. S. Lay, W. D. Liu, M. Hong, J. Kwo, and J. P. Mannaerts, Electronics Letters, Vol. 37, No. 9, 595, 2001.
    5. DIETER K. SCHRODER, “semiconductor material and device characterization” Wiley

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE