簡易檢索 / 詳目顯示

研究生: 劉嘉勳
Chia-Hsun Liu
論文名稱: 藉由對光不穩定的包覆策略和雷射光解裝置來研究抗凍蛋白RD1的摺疊動力學
Studying the folding kinetics of an antifreeze protein RD1 by using photolabile caging strategy and laser flash photolysis
指導教授: 陳長謙
Sunny I. Chan
陳佩燁
Rita Pei-Yeh Chen
俞聖法
Steve Sheng-Fa Yu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 75
中文關鍵詞: 蛋白質折疊包覆抗凍蛋白定點突變法
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蛋白質如何摺疊? 科學家仍無法解釋蛋白質是如何摺疊成其最終構造的。 蛋白質是藉由無數構形的改變來形成專一立體結構,為了解蛋白質摺疊的本質, 我們必須有系統地探討早期摺疊過程。 在本計畫中,我們以一個以光驅動的包覆策略,從奈秒時間範圍開始,偵測蛋白質摺疊的整個過程,我們的標的蛋白質是一種抗凍蛋白RD1,利用其蛋白質中心有一個小洞的性質,藉定點突變法改變小洞周圍第七個胺基酸Ala至Cys (命名為RD1-A7C),在Cys上加一個對光不穩定的包覆物,由於包覆物疏水性的推斥作用而阻撓蛋白質摺疊,再用極短的雷射光打斷此對光不穩定的包覆物,而啟動蛋白質摺疊成其自然構造。
    於此論文中,我們合成一個對光不穩定的包覆化合物4-hydroxyphenacyl bromide (HPB),並大量表現及純化RD1-A7C。 接著,HPB被成功地加到RD1-A7C上 (命名為RD1-A7C-HP)。 最後,我們研究了RD1-A7C-HP的光解、 結構特性、和其折疊動力學。


    How do proteins fold? Scientists still can’t find a rule to explain how it works. Proteins organize themselves into specific three-dimensional structures through the myriads of conformational changes. In order to understand the intrinsic principle of protein folding, early events of folding process have to be systematically explored. Here we proposed a photo-triggered caging-strategy to analyze the whole folding process of a protein on a nanosecond time-scale. Our target protein is an antifreeze protein, RD1, taking advantage of the existence of a small cavity in the center of the protein. We change Ala-7 of RD1 to Cys (designated RD1-A7C) by site-directed mutagenesis and add a photolabile cage group to the residue Cys around the cavity. The bulky size of the cage can hinder the hydrophobic packing and unfold the protein. A short laser pulse is used to break the photolabile cage and to initiate the refolding of the protein toward its native state.
    In this work, we synthesized the photolabile cage compound 4-hydroxyphenacyl bromide (HPB). The protein RD1-A7C was expressed and purified. HPB was successfully added to the RD1-A7C protein (denoted RD1-A7C-HP). Finally, the photolysis, structural characterization, and folding kinetics of RD1-A7C-HP were studied.

    Abbreviations Abstract 中文摘要 Chapter 1 Introduction 1.1 Recent advances in understanding protein folding mechanisms 1.2 Fast events in protein folding Stopped-flow method Continuous-flow method Single-molecule measurement method Pressure-jump method Dynamic NMR method Temperature jump (T-jump) Ultrasonic absorption CO flash photolysis Photoreduction of the cytochrome c heme (rapid electron transfer) Photolysis of aryl disulfides The photochemical triggering in a nondenaturing environment 1.3 The p-hydroxyphenacyl (pHP) caged phototrigger 1.4 Applications of the pHP group in studies of protein folding 1.5 Our model system-antifreeze protein 1.6 Aims of the project Chapter 2 Materials and Methods 2.1 Materials 2.1.1 Water 2.1.2 Chemicals 2.1.3 Centrifuge 2.1.4 Chromatography column, membranes, filters 2.1.5 Circular dichroism spectroscopy (CD) 2.1.6 Electrophoresis 2.1.7 Gel filtration chromatography 2.1.8 High performance liquid chromatography (HPLC) 2.1.9 Ion exchange chromatography 2.1.10 Lyophilizer 2.1.11 Mass spectroscopy 2.1.12 Nuclear magnetic resonance spectroscopy (NMR) 2.1.13 Photochemical reactor 2.1.14 Thin-layer chromatography (TLC) 2.1.15 Ultraviolet spectroscopy 2.2 Methods 2.2.1 Synthesis of 4-hydroxyphenacyl bromide (HPB) 2.2.2 Synthesis of RD1-A7C-HP 2.2.3 Photolysis of RD1-A7C-HP 2.2.4 Small scale expression of RD1 at different conditions 2.2.5 Over-expression and preparation of RD1 inclusion bodies 2.2.6 Refolding and purification of RD1 inclusion bodies 2.2.7 Over-expression and preparation of RD1 in the soluble form 2.2.8 Small scale expression of RD1-A7C at different conditions 2.2.9 Large scale over-expression and purification of RD1-A7C in the soluble form Chapter 3 Results and Discussion (I) 3.1 Small-expression of RD1 in different conditions 3.2 Refolding and purification of RD1 expressed in E. coli as inclusion bodies 3.3 RD1 expressed in E. coli as the soluble form 3.4 Small-expression of RD1-A7C in different conditions 3.5 Purification of RD1-A7C expressed in E. coli as the soluble form 3.6 Identification of RD1-A7C Chapter 4 Results and Discussion (II) 4.1 Synthesis of 4-hydroxyphenacyl bromide (HPB) 4.2 Synthesis of RD1-A7C-HP 4.3 Photolysis of RD1-A7C-HP Chapter 5 Conclusions and Future Outlooks References

    Abkevich, V. I., Gutin, A. M. & Shakhnovich, E. I. Specific nucleus as the transition state for protein folding: evidence from the lattice model. Biochemistry 33, 10026-36 (1994).
    Anfinsen, C. B. Principles that govern the folding of protein chains. Science 181, 223-30 (1973).
    Ballew, R. M., Sabelko, J. & Gruebele, M. Observation of distinct nanosecond and microsecond protein folding events. Nat. Struct. Biol. 3, 923-6 (1996).
    Benz, F. W. & Roberts, G. C. Nucler magnetic resonance studies of the unfolding of pancreatic ribonuclease. J. Mol. Biol. 91, 345-65 (1975).
    Bieri, O. & Kiefhaber, T. Elementary steps in protein folding. Biol. Chem. 380, 923-929 (1999).
    Bieri, O. et al. The speed limit for protein folding measured by triplet-triplet energy transfer. Proc. Natl. Acad. Sci. USA 96, 9597-601 (1999).
    Bradbury, J. H. & King, N. L. Denaturation of proteins: single or multiple step process? Nature 223, 1154-6 (1969).
    Brousmiche, D. W. & Wan, P. Excited state (formal) intramolecular proton transfer (ESIPT) in p-hydroxyphenyl ketones mediated by water. J. Photochem. Photobiol., A 130, 113-118 (2000).
    Burton, R. E., Huang, G. S., Daugherty, M. A., Calderone, T. L. & Oas, T. G. The energy landscape of a fast-folding protein mapped by Ala-->Gly substitutions. Nat. Struct. Biol. 4, 305-10 (1997).
    Burton, R. E., Huang, G. S., Daugherty, M. A., Fullbright, P. W. & Oas, T. G. Microsecond protein folding through a compact transition state. J. Mol. Biol. 263, 311-322 (1996).
    Callender, R. H., Dyer, R. B., Gilmanshin, R. & Woodruff, W. H. Fast events in protein folding: the time evolution of primary processes. Annu. Rev. Phys. Chem. 49, 173-202 (1998).
    Chan, C. K., Hofrichter, J. & Eaton, W. A. Optical triggers of protein folding. Science 274, 628-9 (1996).
    Chan, C. K. et al. Submillisecond protein folding kinetics studied by ultrarapid mixing. Proc. Natl. Acad. Sci. USA 94, 1779-84 (1997).
    Cheng, C. H. & DeVries, A. L. Structures of antifreeze peptides from the antarctic eel pout, Austrolycicthys brachycephalus. Biochim. Biophys. Acta. 997, 55-64 (1989).
    Conrad, P. G. et al. p-hydroxyphenacyl phototriggers: The reactive excited state of phosphate photorelease. J. Am. Chem. Soc. 122, 9346-9347 (2000).
    Conrad, P. G., Givens, R. S., Weber, J. F. W. & Kandler, K. New phototriggers: Extending the p-hydroxyphenacyl pi-pi* absorption range. Org. Lett. 2, 1545-1547 (2000).
    Corrie, J. E. T. & Trentham, D. R. Biological applications of photochemical switches (Ed.: H. Morrison), Wiley, New York. 243-299 (1993).
    Davies, P. L. & Hew, C. L. Biochemistry of fish antifreeze proteins. FASEB J. 4, 2460-8 (1990).
    DeLuca, C. I., Davies, P. L., Ye, Q. L. & Jia, Z. C. The effects of steric mutations on the structure of type III antifreeze protein and its interaction with ice. J. Mol. Biol. 275, 515-525 (1998).
    Dill, K. A. Theory for the folding and stability of globular proteins. Biochemistry 24, 1501-9 (1985).
    Dill, K. A. & Chan, H. S. From Levinthal to pathways to funnels. Nat. Struct. Biol. 4, 10-19 (1997).
    Dyer, R. B., Gai, F. & Woodruff, W. H. Infrared studies of fast events in protein folding. Acc. Chem. Res. 31, 709-716 (1998).
    Dyer, R. B. et al. Hairpin folding dynamics: the cold-denatured state is predisposed for rapid refolding. Biochemistry 44, 10406-15 (2005).
    Ewart, K. V., Rubinsky, B. & Fletcher, G. L. Structural and functional similarity between fish antifreeze proteins and calcium-dependent lectins. Biochem. Biophys. Res. Commun. 185, 335-40 (1992).
    Ferguson, N., Capaldi, A. P., James, R., Kleanthous, C. & Radford, S. E. Rapid folding with and without populated intermediates in the homologous four-helix proteins Im7 and Im9. J. Mol. Biol. 286, 1597-1608 (1999).
    Givens, R. S., Jung, A., Park, C. H., Weber, J. & Bartlett, W. New photoactivated protecting groups .7. p-Hydroxyphenacyl: A phototrigger for excitatory amino acids and peptides. J. Am. Chem. Soc. 119, 8369-8370 (1997).
    Givens, R. S. & Park, C. H. p-hydroxyphenacyl ATP: A new phototrigger. Tetrahedron Lett. 37, 6259-6262 (1996).
    Givens, R. S. et al. New phototriggers 9: p-hydroxyphenacyl as a C-terminal photoremovable protecting group for oligopeptides. J. Am. Chem. Soc. 122, 2687-2697 (2000).
    Gronwald, W. et al. The solution structure of type II antifreeze protein reveals a new member of the lectin family. Biochemistry 37, 4712-21 (1998).
    Gruebele, M., Sabelko, J., Ballew, R. & Ervin, J. Laser temperature jump induced protein refolding. Acc. Chem. Res. 31, 699-707 (1998).
    Gruenewald, B., Nicola, C. U., Lustig, A., Schwarz, G. & Klump, H. Kinetics of the helix-coil transition of a polypeptide with non-ionic side groups, derived from ultrasonic relaxation measurements. Biophys. Chem. 9, 137-47 (1979).
    Hagen, S. J., Hofrichter, J., Szabo, A. & Eaton, W. A. Diffusion-limited contact formation in unfolded cytochrome c: estimating the maximum rate of protein folding. Proc. Natl. Acad. Sci. USA 93, 11615-7 (1996).
    Hansen, K. C., Rock, R. S., Larsen, R. W. & Chan, S. I. A method for photoinitating protein folding in a nondenaturing environment. J. Am. Chem. Soc. 122, 11567-11568 (2000).
    Hansen, K. C., Schultz, B. E., Wang, G. & Chan, S. I. Reaction of Escherichia coli cytochrome bo(3) and mitochondrial cytochrome bc(1) with a photoreleasable decylubiquinol. Biochim. Biophys. Acta 1456, 121-37 (2000).
    Huang, C. Y. et al. Helix formation via conformation diffusion search. Proc. Natl. Acad. Sci. USA 99, 2788-93 (2002).
    Huang, C. Y., Klemke, J. W., Getahun, Z., DeGrado, W. F. & Gai, F. Temperature-dependent helix-coil transition of an alanine based peptide. J. Am. Chem. Soc. 123, 9235-8 (2001).
    Huang, G. S. & Oas, T. G. Submillisecond folding of monomeric lambda repressor. Proc. Natl. Acad. Sci. USA 92, 6878-82 (1995).
    Jacob, M. et al. Microsecond folding of the cold shock protein measured by a pressure-jump technique. Biochemistry 38, 2882-91 (1999).
    Jaenicke, R. Stability and folding of domain proteins. Prog. Biophys. Mol. Biol. 71, 155-241 (1999).
    Jia, Z., DeLuca, C. I., Chao, H. & Davies, P. L. Structural basis for the binding of a globular antifreeze protein to ice. Nature 384, 285-8 (1996).
    Jones, C. M. et al. Fast events in protein folding initiated by nanosecond laser photolysis. Proc. Natl. Acad. Sci. USA 90, 11860-4 (1993).
    Karplus, M. & Weaver, D. L. Protein-folding dynamics. Nature 260, 404-6 (1976).
    Kauffmann, E., Darnton, N. C., Austin, R. H., Batt, C. & Gerwert, K. Lifetimes of intermediates in the beta -sheet to alpha -helix transition of beta -lactoglobulin by using a diffusional IR mixer. Proc. Natl. Acad. Sci. USA 98, 6646-9 (2001).
    Ko, T. P. et al. The refined crystal structure of an eel pout type III antifreeze protein RD1 at 0.62-A resolution reveals structural microheterogeneity of protein and solvation. Biophys. J. 84, 1228-1237 (2003).
    Lazaridis, T. & Karplus, M. "New view" of protein folding reconciled with the old through multiple unfolding simulations. Science 278, 1928-31 (1997).
    Lester, H. A. & Nerbonne, J. M. Physiological and pharmacological manipulations with light flashes. Annu. Rev. Biophys. Bioeng. 11, 151-75 (1982).
    Levinthal, C. Are there pathways for protein folding? J. Chem. Phys. 65, 44-45 (1968).
    Lipman, E. A., Schuler, B., Bakajin, O. & Eaton, W. A. Single-molecule measurement of protein folding kinetics. Science 301, 1233-5 (2003).
    Lu, H. S. M. et al. Aminothiotyrosine disulfide, an optical trigger for initiation of protein folding. J. Am. Chem. Soc. 119, 7173-7180 (1997).
    McDonald, C. C., Phillips, W. D. & Glickson, J. D. Nuclear magnetic resonance study of the mechanism of reversible denaturation of lysozyme. J. Am. Chem. Soc. 93, 235-46 (1971).
    Mines, G. A., Pascher, T., Lee, S. C., Winkler, J. R. & Gray, H. B. Cytochrome c folding triggered by electron transfer. Chem. Biol. 3, 491-7 (1996).
    Munoz, V., Thompson, P. A., Hofrichter, J. & Eaton, W. A. Folding dynamics and mechanism of beta-hairpin formation. Nature 390, 196-9 (1997).
    Ng, N. F. & Hew, C. L. Structure of an antifreeze polypeptide from the sea raven. Disulfide bonds and similarity to lectin-binding proteins. J. Biol. Chem. 267, 16069-75 (1992).
    Park, C. H. & Givens, R. S. New photoactivated protecting groups .6. p-hydroxyphenacyl: A phototrigger for chemical and biochemical probes. J. Am. Chem. Soc. 119, 2453-2463 (1997).
    Pascher, T., Chesick, J. P., Winkler, J. R. & Gray, H. B. Protein folding triggered by electron transfer. Science 271, 1558-60 (1996).
    Pflumm, M., Luchins, J. & Beychok, S. Stopped-flow circular dichroism. Methods Enzymol. 130, 519-34 (1986).
    Phillips, C. M., Mizutani, Y. & Hochstrasser, R. M. Ultrafast thermally induced unfolding of RNase A. Proc. Natl. Acad. Sci. USA 92, 7292-6 (1995).
    Radford, S. E. Protein folding: progress made and promises ahead. Trends Biochem. Sci. 25, 611-618 (2000).
    Regenfuss, P., Clegg, R. M., Fulwyler, M. J., Barrantes, F. J. & Jovin, T. M. Mixing liquids in microseconds. Rev. Sci. Instrum. 56, 283-290 (1985).
    Rock, R. S. & Chan, S. I. Synthesis and photolysis properties of a photolabile linker based on 3'-methoxybenzoin. J. Org. Chem. 61, 1526-1529 (1996).
    Rock, R. S. & Chan, S. I. Preparation of a water-soluble "cage" based on 3 ',5 '-dimethoxybenzoin. J. Am. Chem. Soc. 120, 10766-10767 (1998).
    Roder, H. & Shastry, M. R. Methods for exploring early events in protein folding. Curr. Opin. Struct. Biol. 9, 620-6 (1999).
    Santoro, M. M. & Bolen, D. W. Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants. Biochemistry 27, 8063-8 (1988).
    Schuler, B., Lipman, E. A. & Eaton, W. A. Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy. Nature 419, 743-7 (2002).
    Shastry, M. C., Luck, S. D. & Roder, H. A continuous-flow capillary mixing method to monitor reactions on the microsecond time scale. Biophys. J. 74, 2714-21 (1998).
    Shastry, M. C. & Roder, H. Evidence for barrier-limited protein folding kinetics on the microsecond time scale. Nat. Struct. Biol. 5, 385-92 (1998).
    Sheehan, J. C. & Umezawa, K. Phenacyl photosensitive blocking groups J. Org. Chem. 38, 3771-3774 (1973).
    Sheehan, J. C. & Wilson, R. M. Photolysis of Desyl Compounds. A New Photolytic Cyclization J. Am. Chem. Soc. 86, 5277-5281 (1964).
    Sheehan, J. C., Wilson, R. M. & Oxford, A. W. Photolysis of methoxy-substituted benzoin esters. Photosensitive protecting group for carboxylic acids J. Am. Chem. Soc. 93, 7222-7228 (1971).
    Shi, Y. J., Corrie, J. E. T. & Wan, P. Mechanism of 3',5'-dimethoxybenzoin ester photochemistry: Heterolytic cleavage intramolecularly assisted by the dimethoxybenzene ring is the primary photochemical step. J. Org. Chem. 62, 8278-8279 (1997).
    Sicheri, F. & Yang, D. S. Ice-binding structure and mechanism of an antifreeze protein from winter flounder. Nature 375, 427-31 (1995).
    Sonnichsen, F. D., DeLuca, C. I., Davies, P. L. & Sykes, B. D. Refined solution structure of type III antifreeze protein: hydrophobic groups may be involved in the energetics of the protein-ice interaction. Structure 4, 1325-37 (1996).
    Sonnichsen, F. D., Sykes, B. D., Chao, H. & Davies, P. L. The nonhelical structure of antifreeze protein type III. Science 259, 1154-7 (1993).
    Thompson, P. A., Eaton, W. A. & Hofrichter, J. Laser temperature jump study of the helix<==>coil kinetics of an alanine peptide interpreted with a 'kinetic zipper' model. Biochemistry 36, 9200-10 (1997).
    Thompson, P. A. et al. The helix-coil kinetics of a heteropeptide. J. Phys. Chem. B. 104, 378-389 (2000).
    Wang, X., DeVries, A. L. & Cheng, C. H. Antifreeze peptide heterogeneity in an antarctic eel pout includes an unusually large major variant comprised of two 7 kDa type III AFPs linked in tandem. Biochim. Biophys. Acta 1247, 163-72 (1995).
    Westmoreland, D. G. & Matthews, C. R. Nuclear magnetic resonance study of the thermal denaturation of ribonuclease A: implications for multistate behavior at low pH. Proc. Natl. Acad. Sci. USA 70, 914-8 (1973).
    Wittung-Stafshede, P. et al. Effect of redox state on the folding free energy of a thermostable electron-transfer metalloprotein: the CuA domain of cytochrome oxidase from Thermus thermophilus. Biochemistry 37, 3172-7 (1998).
    Yang, D. S. et al. Identification of the ice-binding surface on a type III antifreeze protein with a "flatness function" algorithm. Biophys. J. 74, 2142-51 (1998).
    Yang, D. S., Sax, M., Chakrabartty, A. & Hew, C. L. Crystal structure of an antifreeze polypeptide and its mechanistic implications. Nature 333, 232-7 (1988).
    Zhang, K., Corrie, J. E. T., Munasinghe, V. R. N. & Wan, P. Mechanism of photosolvolytic rearrangement of p-hydroxyphenacyl esters: Evidence for excited-state intramolecular proton transfer as the primary photochemical step. J. Am. Chem. Soc. 121, 5625-5632 (1999).
    Zou, K., Miller, W. T., Givens, R. S. & Bayley, H. Caged Thiophosphotyrosine Peptides. Angew. Chem. Int. Ed. 40, 3049-3051 (2001).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE