簡易檢索 / 詳目顯示

研究生: 吳振茗
Wu, Chen-Ming.
論文名稱: 基於可見光通訊之多層非對稱剪裁光正交分頻多工低複雜度收發器設計
A Low Complexity design of LACO-OFDM Transceiver for Visible Light Communications
指導教授: 馬席彬
Ma, Hsi-Pin
口試委員: 黃元豪
Huang, Yuan-Hao
翁詠祿
Ueng, Yeong-Luh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 英文
論文頁數: 89
中文關鍵詞: 可見光通訊非對稱剪裁光正交分頻多工正交分頻多工多層式非對稱剪裁光正交分頻多工光學接收機光學調變
外文關鍵詞: VLC, ACO-OFDM, OFDM, LACO-OFDM, Optical-Receiver, Optical-Modulation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在可見光通訊(Visible Light Communication)下,為了符合物理元件的需 求,訊號必須使用正實數的數據,因而延伸出多種機制將數據轉換為正實數。 在本篇論文中,我們以已經實現的直流偏置光正交分頻多工(DCO-OFDM)系統為 參考,重新設計多層式不對稱剪裁光正交分頻多工(LACO-OFDM)收發機以及其優 化。 DCO-OFDM 系統存在著功率過高以及錯誤率高的問題,因此我們利用 LACO- OFDM 系統優化。在此系統中,我們使用 16 正交振幅調變技術(16-QAM)與 1024個 子載波。為了克服多路徑效應造成的影響,我們的系統採用 1/16 符元長度的循 環字首(Cyclic Prefix),並在子載波內擺置領航信號(Pilot Signal),以及在 傳送端加入前置符元(Preamble)。在接收器,利用領航信號估測頻域訊號的相 位旋轉,以及取樣時脈偏移(Sampling Clock Offset)。基於 Park 演算法利用前 置符元做到時間同步。除此之外,不同於以往的接收機,LACO-OFDM系統需要多 次的迭代來解調訊號,同時需要大量的記憶體來運算。因此額外設計了一個分 解式接收機,在提高錯誤率的代價下,我們大量節省了運算量以及記憶體。 本論文最後採用了 L=4 的 LACO-OFDM 模型,在 1.28 百萬比特串流測試 下,LACO-OFDM系統的峰值僅為DCO-OFDM 的一半。在迭代式接收機的模擬下,以 錯誤率為零為參考點,該系統比 DCO-OFDM系統低了 14dB。在分解式接收機的模 擬下,錯誤率僅降低了 7dB,但相較於迭代式接收機,減少了 3 次快速反傅立葉 轉換(IFFT)以及 3 次快速傅立葉轉換(FFT),節省了多次迭代過程所耗費的記憶 體。不僅如此,我們也模擬了64 正交振幅調變技術(64-QAM)的情形,結果表 示,當我們採用 64-QAM 的系統,錯誤率最糟的情形僅與 DCO-OFDM 在16-QAM 下相同。


    In visible light communication (VLC), in order to meet the requirements of physical components, signals must be positive real data, thus extending a variety of mechanisms to convert data into positive real numbers. In this paper, we redesigned the layered asymmetrically clipped optical orthogonal frequency division multiplexing (LACO-OFDM) transceiver and its optimization with reference to the DC offset optical orthogonal frequency division multiplexing (DCO-OFDM) system which was already implemented .

    DCO-OFDM systems have problems of high power comsumption and high error rate, so we use LACO-OFDM system to optimize. In this system, we use 16 quadrature amplitude modulation (16-QAM) techniques with 1024 subcarriers. In order to overcome the effects of multipath effects, our system uses a cyclic prefix (CP) of 1/16 symbol length, and sets the pilot signal in the subcarrier, and adds the preamble to the transmitter. At the receiver, the pilot signal is used to estimate the phase rotation of the frequency domain signal and the sampling clock offset (SCO). Based on the Park algorithm, the preamble is used to achieve time synchronization. In addition, the LACO-OFDM system requires multiple iterations to demodulate the signal and requires a large amount of memory to operate. Therefore, an additional decomposed receiver is designed, which saves a lot of computation and memory at the cost of increasing the error rate.

    At the end of the paper, the LACO-OFDM model with L=4 is adopted. Under the 1.28 million bitstream simulation, the peak of the LACO-OFDM system is only half of the DCO-OFDM system. Under the simulation of the iterative receiver, the SNR requirement which is error free of the system is 14 dB lower than that of the DCO-OFDM system. In the simulation of the decomposed receiver, the SNR requirement is only reduced by 7dB, but comparing to the iterative receiver, decreasing the computation and memory usage about 3 fast inverse Fourier transform (IFFT) and 3 fast Fourier transform (FFT). We also simulated the case of 64-quadrature amplitude modulation (64-QAM). The result express that the worst case of LACO-OFDM system is only the same as the DCO-OFDM system with 16-QAM.

    Abstract i Introduction 1 Background 1 Motivation 3 Main Contributions 4 Organization 4 VLC System Description and Literature Survey 5 Overview of Indoor VLC Systems 5 OFDM System 6 VLC Modulation Schemes 8 On-off Keying (OOK) 8 Pulse Amplitude Modulation (PAM) 9 Pulse Width Modulation (PWM) 10 Pulse Position Modulation (PPM) 11 Variable Pulse Position Modulation (VPPM) 11 DC Biased Optical OFDM (DCO-OFDM) 12 Flipped Optical OFDM (Flip-OFDM) 14 Asymmetrically Clipped Optical OFDM (ACO-OFDM) 16 Layered Asymmetrically Clipped Optical OFDM (LACO-OFDM)17 OFDM Performance Comparison 20 Related Works 23 System Design 27 Introduction 27 System Specification 29 Design and Verification Flow 30 OFDM System Model 31 Modulation 34 Inverse Fast Fourier Transform (IFFT) and Fast Fourier Transform(FFT) 35 Subcarrier Allocation of DCO-OFDM 39 Subcarrier Allocation of ACO-OFDM 43 Subcarrier Allocation of LACO-OFDM 44 Cyclic Prefix 52 Preamble 53 Synchronization 55 LACO-OFDM Receiver 62 Implementation Results 71 Simulation Results 71 Peak to Average Power Ratio (PAPR) Comparison 71 Dynamic range simulation 73 Different layer simulation 74 Receiver simulation 80 Complexity reduced 81 Sampling Clock Offset Compensation 82 Compare with related work 83 Conclusions and Future Works 85 Conclusions 85 Future Works 86 Bibliography 87

    [1] C. Wang, H.-Y. Yu, and Y.-J. Zhu, “A Long Distance Underwater Visible Light Commu-nication System With Single Photon Avalanche Diode,”IEEE Photonics Journal, vol. 8,Oct. 2016.
    [2] B. Lin, X. Tang, Z. Ghassemlooy, C. Lin, and Y. Li, “Experimental Demonstration of anIndoor VLC Positioning System Based on OFDMA,”IEEE Photonics Journal, vol. 9,pp. 1–9, Feb. 2017.
    [3] S. Yamaguchi, V. Mai, T. Cong Thang, and A. Pham, “Design and Performance Evalu-ation of VLC Indoor Positioning System using Optical Orthogonal Codes.”inProc.IEEE 5th Int. Conf. Commun. Electron. (ICCE), Aug. 2014, pp. 54–59.
    [4] L. U. Khan, “Visible Light Communication: Applications, Architecture, Standardizationand Research Challenges,”Digital Communications and Networks, vol. 3, no. 2, pp. 78–88, 2017.
    [5] H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. Tae Won,“100-Mb/s NRZ Visible Light Communications Using a Postequalized White LED,”IEEE Photonics Technology Letters, vol. 21, pp. 1063–1065, Sep. 2009.
    [6] B. Yu, H. Zhang, and H. Dong, “Optimized 481 Mb/s Visible Light CommunicationSystem Using Phosphorescent White LED,”Chinese Optics Letters, vol. 12, Nov. 2014.
    [7] Y. Wang, Y. Wang, and N. Chi, “Experimental Verification of Performance Improvementfor a Gigabit Wavelength Division Multiplexing Visible Light Communication System Utilizing Asymmetrically Clipped Optical Orthogonal Frequency Division Multiplex-ing,”Photonics Research, vol. 2, Oct. 2014.
    [8] P. Manousiadis, H. Chun, S. Rajbhandari, R. Mulyawan, D. A Vithanage, G. Faulkner,D. Tsonev, J. McKendry, M. Ijaz, E. Xie, E. Gu, M. Dawson, H. Haas, G. Turnbull,I. Samuel, and D. O ’brien, “Emonstration of 2.3 Gb/s RGB White-light VLC UsingPolymer Based Colour Converters and GaN Micro LEDs.”inProc. IEEE SummerTopicals Meeting Ser., Jul. 2015, pp. 222–223.
    [9] X. Wang, P. Ho, and Y. Wu, “Robust Channel Estimation and ISI Cancellation for OFDMSystems with Suppressed Features,”IEEE Journal on Selected Areas in communications,vol. 23, no. 5, pp. 963–972, 2005.
    [10] D. C. Daly and A. P. Chandrakasan, “An Energy Efficient OOK Transceiver for WirelessSensor Networks,”IEEE Journal of Solid-State Circuits, vol. 42, pp. 1003–1011, May.2007.
    [11] Q. Tao, C. Zhong, H. Lin, and Z. Zhang, “Symbol Detection of Ambient BackscatterSystems with Manchester Coding,”IEEE Transactions on Wireless Communications,vol. 17, no. 6, pp. 4028–4038, 2018.
    [12] S. Rajagopal, R. D. Roberts, and S.-K. Lim, “IEEE 802.15. 7 Visible Light Communi-cation: Modulation Schemes and Dimming Support,”IEEE Communications Magazine,vol. 50, no. 3, 2012.
    [13] J. Noh, S. Lee, J. Kim, M. Ju, and Y. Park, “A Dimming Controllable VPPM-based VLCSystem and Implementation,”Optics Communications, vol. 343, pp. 34–37, May. 2015.
    [14] K. Lee and H. Park, “Modulations for Visible Light Communications with DimmingControl,”IEEE photonics technology letters, vol. 23, no. 13, p. 1136, 2011.
    [15] D. Xie, “Equalizer Design and Implementation for ACO OFDM VLC System with Real-valued Hartley Transform,” Master’s thesis, National Central University, 2015.
    [16] Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor Visible Light DataTransmission System Utilizing White LED Lights,”IEICE Transactions on Communi-cations, vol. E86-B, pp. 2440–2454, Aug. 2003.
    [17] K. Fan, T. Komine, Y. Tanaka, and M. Nakagawa, “The Effect of Reflection on IndoorVisible-Light Communication System Utilizing White LEDs,” vol. 2.inProc. 5thInternational Symposium on Wireless Personal Multimedia Communications, Nov. 2002,pp. 611–615.
    [18] S. Chen and C. Zhu, “ICI and ISI Analysis and Mitigation for OFDM Systems withInsufficient Cyclic Prefix in Time-varying Channels,”IEEE Transactions on ConsumerElectronics, vol. 50, no. 1, pp. 78–83, 2004.
    [19] Y.-C. Wu, K.-W. Yip, T.-S. Ng, and E. Serpedin, “Maximum-likelihood Symbol Syn-chronization for IEEE 802.11 a WLANs in Unknown Frequency-selective Fading Chan-nels,”IEEE Transactions on Wireless Communications, vol. 4, no. 6, pp. 2751–2763,2005.
    [20] P. Xiao, C. Cowan, T. Ratnarajah, and A. Fagan, “Time Synchronization Algorithms forIEEE 802.11 OFDM Systems,” 2009.
    [21] W. Fei, “Research on Synchronization Technology of Visible Light OFDM Communi-cation System,” Master’s thesis, Southeast University, 2015.
    [22] C. Zhang and K. Pang, “Synchronization Sequence Generated by Modified Park Algo-rithm for NC-OFDM Transmission,”IEEE Signal Processing Letters, vol. 22, no. 4, pp.385–389, 2015.
    [23] M. Zheng, “Research on Synchronization Technology of OFDM Visible Optical Com-munication System,” Master’s thesis, Southeast University, 2017.
    [24] Z. Zhang, Q. Zhang, Y. Li, Y. Song, J. Zhang, and J. Chen, “A Single Pilot Subcarrier-based Sampling Frequency Offset Estimation and Compensation Algorithm for OpticalIMDD OFDM Systems,”IEEE Photonics Journal, vol. 8, no. 5, pp. 1–9, 2016.

    QR CODE