簡易檢索 / 詳目顯示

研究生: 王俊元
Wang, Chun-Yuan
論文名稱: 單晶銀在低損耗的線性與非線性表面電漿子的研究
Silver Single Crystals for Low-Loss Linear and Nonlinear Plasmonics
指導教授: 果尚志
Gwo, Shangjr
口試委員: 嚴大任
Yen, Ta-Jen
張玉明
Chang, Yu-Ming
蔡定平
Tsai, Din Ping
李曉勤
Li, Xiaoqin
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 103
中文關鍵詞: 表面電漿子單晶銀非線性光學二次諧波銀板
外文關鍵詞: Silver single crystal, Low-loss, Silver plate
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電漿子的奈米結構和超材料系統,很有機會被應用在操控和增強次波長尺度的線性和非線性光學系統。在可見光到近紅外的範圍,銀金屬被視為擁有最好的表面電漿子光學特性。因為表面電漿子在銀裡面,比在所有其他的金屬中,擁有更低的能量損耗。然而,常規技術(真空濺鍍和真空蒸鍍)所製備的銀膜或銀結構,其金屬銀是由多種晶格所組成的。這種金屬的表面晶界以及表面粗糙度會對表面電漿子造成額外的散射損耗,以至限制它真正的效能。因此,發展超平坦、大面積的單晶銀是減少散射損耗的關鍵。這種單晶銀在製作奈米結構上,擁有極高的再現性,這種特性有機會實現表面電漿子集成奈米元件。在本研究中,我們利用化學合成的方法,在室溫中成長出釐米級的單晶銀板,這是在過去文獻中利用膠體溶液所合成出最大的銀板,也比過去最大的銀板要超過一至兩個數量級。這個銀板應用在低損耗的線性和非線性的表面電漿子系統中,擁有比多晶銀更好的光學特性。我們發現,這個銀板可以讓表面電漿子傳播的距離超過過去所有文獻的實驗紀錄,在紅光,傳播的距離超過100微米。這個傳播的距離,也超過用Johnson-Christy量測銀的介電常數所推算的傳播距離。過去,Johnson-Christy的銀參數被視為是損耗最低的介電常數。另外,聚焦離子蝕刻術在這個單晶銀板上製作納米結構時,奈米結構擁有很高的再現姓與可調性。我們利用這個特性,設計並製作出一個特殊的雙共振頻率的奈米溝槽陣列結構,可應用在二次諧波訊號的產生(SHG)。相對於使用粗糙表面的金屬膜或是top-down製程方式所製作的奈米天線陣列(多晶金屬),使用單晶銀所產生的二次諧波訊號,擁有很高的空間均勻性(標準差為10%)。另外,使用單晶銀,可精準微調不同深度的奈米溝槽(100 nm到175 nm),藉以大幅調控奈米溝槽的表面電漿子的共振能量(444 nm ~ 624 nm),這使我們可以把結構輕易設計在感興趣的波長上,產生全可見光的二次諧波訊號。


    Plasmonic nanostructures and metamaterials offer unique possibilities for manipulating and amplifying linear and nonlinear optical processes at subwavelength scales. At optical frequencies, silver (Ag) is the best plasmonic material in optical property owing to its lowest intrinsic loss among all metals. However, additional scattering losses originated from grain boundaries and surface roughness limit the performance of polycrystalline Ag plasmonic structures prepared by conventional techniques. Therefore, the development of ultrasmooth, macroscopic-sized Ag crystals exhibiting reduced scattering losses is critical to fully understand the ultimate performance of Ag as a plasmonic material and can also lead to cascaded and integrated plasmonic devices with reproducible characteristics. Here, we demonstrate the growth of single-crystalline Ag plates with millimeter lateral size—the largest colloidal Ag crystals ever reported—for low-loss linear and nonlinear plasmonic applications. Using these Ag crystals, we have achieved record-breaking surface plasmon polariton propagation lengths beyond 100 m in the red wavelength region. These lengths even exceed the predicted propagation lengths using the Johnson-Christy optical constants. Furthermore, these crystals allow the fabrication of highly tunable and reproducible plasmonic nanostructures by focused-ion-beam milling. We have designed and fabricated novel double resonant nanogroove arrays using these crystals for spatially uniform and spectrally tunable second-harmonic generation (SHG). In contrast to “hot”-spot-based nonlinear optical processes such as surface-enhanced Raman scattering (SERS) and SHG using either randomly roughened films or top-down fabricated plasmonic nanoantenna arrays, our approach can achieve nonlinear signal generation over a larger sample area with dramatically improved uniformity and controllability.

    Contents Abstracts Contents…………………………………………………………….…………………………………I List of Figures………………………………………………….……………………………………III Chapter 1 Introduction………………………………………………………………………………1 1.1 Background of Surface Plasmon…………………………………………………………………..1 1.1.1 Surface Plasmon Polaritons (SPPs)…………………………………………………………1 1.1.2 Local Surface Plasmon Polaritons (LSPP)………………………………………………….3 1.2 Low –loss plasmonic material-Silver …………………………….………………………………10 1.3 Fabricating high quality silver film ……………………………….……………… ……………..12 1.4 Introduction of nonlinear plasmonic……………………………………………………..……….18 Chapter 2 Simulation method………………………………………………………………………28 1.1 The finite-difference time-domain method (FDTD)………………………………………………28 1.1.1 Algorithm of FDTD ……..………………………………………….……………………….28 1.1.2 The Yee algorithm ..……………………………………………….…………………………30 1.1.3 Finite differences and notation………………………………………………………………31 1.1.4 Numerical dispersion and stability………………………………….………………………..34 Chapter 3 Material property of giant silver single crystal………………………………….…….37 3.1 Synthesis of colloidal giant silver single crystal…………………………………………………..37 3.2 Structure property of colloidal giant silver single crystal ……………………….……………….39 Chapter 4 Propagation length of giant colloidal silver crystal….…………………..……………43 4.1 White light interference measurement (WLI)…………………………………………………….43 4.2 Direct scattering intensity measurement (DSI)………………………………….………………..54 4.3 Discussion…………………………………………………..…………………………………….57 Chapter 5 Nonlinear plasmonic on giant silver single crystal - Spatially uniform second harmonic generation (SHG)………………….………….60 5.1 Double palsmonic resonant structure (V-shaped nanogroove) for strongly enhancing SHG………………………………………………………………………………………..........…..62 Chapter 6 Semiconductor on single crystalline silver film— All-Color Plasmonic Nanolasers with Ultralow Thresholds: Autotuning Mechanism for Single-Mode Lasing……………………………………………………………………………………...…..71 6.1 Motivation………………………………………………………………………………………..71 6.2 Gain material (InGaN nanorod)………………………………………………………..…………72 6.3 Lasing measurement …………….……………………………………………………………….77 6.4 “Autotuning” Mechanism for Single-Mode Lasing …………..………………………………….79 Chapter 7 Conclusions and Future Perspective…………………………………………………85

    References

    1 Ritchie, R. Plasma Losses by Fast Electrons in Thin Films. Physical Review 106, 874-881 (1957).
    2 Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824-830 (2003).
    3 Hecht, L. N. B. Principles of nano-optics. (Cambridge University Press, 2006).
    4 Sambles, J. R., Bradbery, G. W. & Yang, F. Optical excitation of surface plasmons: An introduction. Contemporary Physics 32, 173-183(1991).
    5 Raether, H. Surface Plasmons (Springer, 1988).
    6 Johnson, P. B. & Christy, R. W. Optical Constants of the Noble Metals. Physical Review B 6, 4370 (1972).
    7 Nagpal, P., Lindquist, N. C., Oh, S. H. & Norris, D. J. Ultrasmooth patterned metals for plasmonics and metamaterials. Science 325, 594-597 (2009).
    8 Park, J. H. et al. Single-crystalline silver films for plasmonics. Adv Mater 24, 3988-3992 (2012).
    9 van Wijngaarden, J. T. et al. Direct imaging of propagation and damping of near-resonance surface plasmon polaritons using cathodoluminescence spectroscopy. Applied Physics Letters 88, 221111 (2006).
    10 Rycenga, M. et al. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev 111, 3669-3712 (2011).
    11 Zhang, Q. et al. Seed-Mediated Synthesis of Ag Nanocubes with Controllable Edge Lengths in the Range of 30−200 nm and Comparison of Their Optical Properties. Journal of the American Chemical Society 132, 11372-11378 (2010).
    12 Zeng, J., Roberts, S. & Xia, Y. Nanocrystal-Based Time–Temperature Indicators. Chemistry – A European Journal 16, 12559-12563 (2010).
    13 Prodan, E., Radloff, C., Halas, N. J. & Nordlander, P. A Hybridization Model for the Plasmon Response of Complex Nanostructures. Science 302, 419-422 (2003).
    14 Nordlander, P., Oubre, C., Prodan, E., Li, K. & Stockman, M. I. Plasmon Hybridization in Nanoparticle Dimers. Nano Letters 4, 899-903 (2004).
    15 Yang, S.-C. et al. Plasmon Hybridization in Individual Gold Nanocrystal Dimers: Direct Observation of Bright and Dark Modes. Nano Letters 10, 632-637 (2010).
    16 Chen, H.-Y. et al. Far-Field Optical Imaging of a Linear Array of Coupled Gold Nanocubes: Direct Visualization of Dark Plasmon Propagating Modes. ACS Nano 5, 8223-8229 (2011).
    17 DUYNE, D. L. J. a. R. P. V. Surface Raman Spectroelectrochemistry Part I. Heterocyclic, Aromatic, and Aliphatic Amines on The Anodized Silver Electrode J. electroanal.Chem. 84, 1-20 (1977).
    18 Lide, D. R. CRC Handbook of Chemistry and Physics (Boca Raton, Fla., 2008).
    19 Boltasseva, A. & Atwater, H. A. Low-loss plasmonic metamaterials. Science 331, 290-291 (2011).
    20 Wiley, B., Sun, Y. & Xia, Y. Synthesis of Silver Nanostructures with Controlled Shapes and Properties. Accounts of Chemical Research 40, 1067-1076 (2007).
    21 Ru, E. L. E., P. in Principles of Surface Enhanced Raman Spectroscopy (Elsevier: Oxford, 2009).
    22 Palik, E. D. Handbook of Optical Constants od Solids v. III (Academic Press, 1998).
    23 Lu, Y. J. et al. Plasmonic nanolaser using epitaxially grown silver film. Science 337, 450-453 (2012).
    24 Vesseur, E. J. R. et al. Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling. Applied Physics Letters 92, 083110 (2008).
    25 Huang, J. S. et al. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. Nat Commun 1, 150 (2010).
    26 Wu, Y. et al. Intrinsic Optical Properties and Enhanced Plasmonic Response of Epitaxial Silver. Adv. Mater. 26, 6106 (2014).
    27 Lu, Y. J. et al. All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing. Nano Lett 14, 4381-4388 (2014).
    28 Chang, C. W. et al. HNO3-Assisted Polyol Synthesis of Ultralarge Single-Crystalline Ag Microplates and Their Far Propagation Length of Surface Plasmon Polariton. ACS applied materials & interfaces 6, 11791-11798 (2014).
    29 Huan-Zhen, L. et al. Mechanism for the Formation of Flake Silver Powder Synthesized by Chemical Reduction in Ethylene Glycol. Acta Phys. -Chim. Sin. 19, 150-153 (2003).
    30 Saleh, B. E. A. T., Malvin Carl. Fundamentals of Photonics. (Wiley-Interscience, 2007).
    31 Simon, H. J., Mitchell, D. E. & Watson, J. G. Optical Second-Harmonic Generation with Surface Plasmons in Silver Films. Physical Review Letters 33, 1531-1534 (1974).
    32 Grosse, N. B., Heckmann, J. & Woggon, U. Nonlinear Plasmon-Photon Interaction Resolved by k-Space Spectroscopy. Physical Review Letters 108, 136802 (2012).
    33 Zayats, A. V., Smolyaninov, I. I. & Maradudin, A. A. Nano-optics of surface plasmon polaritons. Physics Reports 408, 131-314 (2005).
    34 Hulst, L. n. N. v. Antennas for light. Nature Photonics 5, 83-90 (2011).
    35 Soukoulis, C. M. & Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photonics 5, 523 (2011).
    36 Kauranen, M. & Zayats, A. V. Nonlinear plasmonics. Nat. Photon. 6, 737-748 (2012).
    37 Homola, J. Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species. Chemical Reviews 108, 462-493 (2008).
    38 Stockman, M. I. Nanoplasmonics: past, present, and glimpse into future. Optics Express 19, 22029-22106 (2011).
    39 Berini, P. & De Leon, I. Surface plasmon-polariton amplifiers and lasers. Nat Photon 6, 16-24 (2012).
    40 Mills, D. L. Nonlinear Optics. 2nd ed., (Springer, 1998).
    41 Bouhelier, A., Beversluis, M., Hartschuh, A. & Novotny, L. Near-Field Second-Harmonic Generation Induced by Local Field Enhancement. Physical Review Letters 90, 013903 (2003).
    42 Lippitz, M., van Dijk, M. A. & Orrit, M. Third-Harmonic Generation from Single Gold Nanoparticles. Nano Letters 5, 799-802 (2005).
    43 Palomba, S., Danckwerts, M. & Novotny, L. Nonlinear plasmonics with gold nanoparticle antennas. Journal of Optics A: Pure and Applied Optics 11, 114030 (2009).
    44 Danckwerts, M. & Novotny, L. Optical Frequency Mixing at Coupled Gold Nanoparticles. Physical Review Letters 98, 026104 (2007).
    45 Kim, S. et al. High-harmonic generation by resonant plasmon field enhancement. Nature 453, 757-760 (2008).
    46 Coutaz, J. L., Neviere, M., Pic, E. & Reinisch, R. Experimental study of surface-enhanced second-harmonic generation on silver gratings. Physical Review B 32, 2227-2232 (1985).
    47 Renger, J., Quidant, R., van Hulst, N. & Novotny, L. Surface-Enhanced Nonlinear Four-Wave Mixing. Physical Review Letters 104, 046803 (2010).
    48 C. K. Chen, A. R. B. d. C., and Y. R. Shen. Surface-Enhanced Second-Harmonic Generation. Phys. Rev. Lett. 46, 145-148 (1981).
    49 Anceau, C., Brasselet, S., Zyss, J. & Gadenne, P. Local second-harmonic generation enhancement on gold nanostructures probed by two-photon microscopy. Optics Letters 28, 713-715 (2003).
    50 Nahata, A., Linke, R. A., Ishi, T. & Ohashi, K. Enhanced nonlinear optical conversion from a periodically nanostructured metal film. OPTICS LETTERS 28 (2003).
    51 Hanke, T. et al. Tailoring spatiotemporal light confinement in single plasmonic nanoantennas. Nano Lett 12, 992-996 (2012).
    52 Zhang, Y., Grady, N. K., Ayala-Orozco, C. & Halas, N. J. Three-dimensional nanostructures as highly efficient generators of second harmonic light. Nano Lett 11, 5519-5523 (2011).
    53 Cai, W., Vasudev, A. P. & Brongersma, M. L. Electrically controlled nonlinear generation of light with plasmonics. Science 333, 1720-1723 (2011).
    54 Pu, Y., Grange, R., Hsieh, C.-L. & Psaltis, D. Nonlinear Optical Properties of Core-Shell Nanocavities for Enhanced Second-Harmonic Generation. Physical Review Letters 104 (2010).
    55 Park, I.-Y. et al. Plasmonic generation of ultrashort extreme-ultraviolet light pulses. Nat Photon 5, 677-681 (2011).
    56 Genevet, P. et al. Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings. Nano Lett 10, 4880-4883 (2010).
    57 Ko, K. D. et al. Nonlinear optical response from arrays of Au bowtie nanoantennas. Nano Lett 11, 61-65 (2011).
    58 P. J. Schuck, D. P. F., A. Sundaramurthy, G. S. Kino, and W. E. Moerner. Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas. Phys. Rev. Lett. 94, 017402 (2005).
    59 Kollmann, H. et al. Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas. Nano Lett 14, 4778-4784 (2014).
    60 Taflove, A. Computational electrodynamics : the finite-difference time-domain method. 3rd ed., (Artech House, 2005).
    61 Kane, Y. Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media. Antennas and Propagation, IEEE Transactions on 14, 302-307 (1966).
    62 Sear, R. P. Nucleation: theory and applications to protein solutions and colloidal suspensions. Journal of Physics: Condensed Matter 19, 033101 (2007).
    63 Zell, J. & Mutaftschiev, B. Nucléation sur la surface d'un fluide de petites dimensions. Journal of Crystal Growth 3–4, 535-540 (1968).
    64 Yugang Sun, Y. Y., Brian T. Mayers, Thurston Herricks, & Younan Xia. Uniform Silver Nanowires Synthesis by Reducing AgNO3 with Ethylene Glycol in the Presence of Seeds and Poly(Vinyl Pyrrolidone). Chem. Mater. 14, 4736-4745 (2002).
    65 Ditlbacher, H. et al. Silver Nanowires as Surface Plasmon Resonators. Physical Review Letters 95, 257403 (2005).
    66 Chou, B.-T., Lin, S.-D., Huang, B.-H. & Lu, T.-C. Single-crystalline silver film grown on Si (100) substrate by using electron-gun evaporation and thermal treatment. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 32, 031209 (2014).
    67 A. Bouhelier, M. B., A. Hartschuh, and L. Novotny. Near-Field Second-Harmonic Generation Induced by Local Field Enhancement. Phys. Rev. Lett. 90, 013903 (2003).
    68 Mühlschlegel, P., Eisler, H.-J., Martin, O. J. F., Hecht, B. & Pohl, D. W. Resonant Optical Antennas. Science 308, 1607-1609 (2005).
    69 Aouani, H., Rahmani, M., Navarro-Cia, M. & Maier, S. A. Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna. Nat Nanotechnol 9, 290-294 (2014).
    70 Thyagarajan, K., Rivier, S., Lovera, A. & Martin, O. J. F. Enhanced second-harmonic generation from double resonant plasmonic antennae. Optics Express 20, 12860-12865 (2012).
    71 Tan, W. C., Preist, T. W., Sambles, J. R. & Wanstall, N. P. Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings. Physical Review B 59, 12661-12666 (1999).
    72 Sondergaard, T. et al. Resonant plasmon nanofocusing by closed tapered gaps. Nano Lett. 10, 291-295 (2010).
    73 Stockman, M. Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides. Physical Review Letters 93 (2004).
    74 Sinjeung Park, J. W. H., and Jae Yong Lee. Doubly resonant metallic nanostructure for high conversion efficiency of second harmonic generation Oprics Express 20, 4856 (2012).
    75 Luk'yanchuk, B. et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9, 707-715 (2010).
    76 Yokoyama, H. Physics and Device Applications of Optical Microcavities. Science 256, 66-70 (1992).
    77 Noda, S. Seeking the Ultimate Nanolaser. Science 314, 260-261 (2006).
    78 Altug, H., Englund, D. & Vuckovic, J. Ultrafast photonic crystal nanocavity laser. Nat Phys 2, 484-488 (2006).
    79 Strauf, S. & Jahnke, F. Single quantum dot nanolaser. Laser & Photonics Reviews 5, 607-633 (2011).
    80 Huang, M. H. et al. Room-Temperature Ultraviolet Nanowire Nanolasers. Science 292, 1897-1899 (2001).
    81 Schneider, C. et al. An electrically pumped polariton laser. Nature 497, 348-352 (2013).
    82 Dang, C. et al. Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. Nat Nano 7, 335-339 (2012).
    83 Bergman, D. J. & Stockman, M. I. Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems. Physical Review Letters 90, 027402 (2003).
    84 Stockman, M. I. Spasers explained. Nat Photon 2, 327-329 (2008).
    85 Stockman, M. I. The spaser as a nanoscale quantum generator and ultrafast amplifier. Journal of Optics 12, 024004 (2010).
    86 Li, D. & Stockman, M. I. Electric Spaser in the Extreme Quantum Limit. Physical Review Letters 110, 106803 (2013).
    87 Zheludev, N. I., Prosvirnin, S. L., Papasimakis, N. & Fedotov, V. A. Lasing spaser. Nat Photon 2, 351-354 (2008).
    88 Hill, M. T. et al. Lasing in metallic-coated nanocavities. Nat Photon 1, 589-594 (2007).
    89 Noginov, M. A. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110-1112 (2009).
    90 Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629-632 (2009).
    91 Ma, R.-M., Oulton, R. F., Sorger, V. J., Bartal, G. & Zhang, X. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. Nat Mater 10, 110-113 (2011).
    92 Wu, C.-Y. et al. Plasmonic Green Nanolaser Based on a Metal–Oxide–Semiconductor Structure. Nano Letters 11, 4256-4260 (2011).
    93 Khajavikhan, M. et al. Thresholdless nanoscale coaxial lasers. Nature 482, 204-207, doi:10.1038/nature10840 (2012).
    94 Zhou, W. et al. Lasing action in strongly coupled plasmonic nanocavity arrays. Nat Nano 8, 506-511 (2013).
    95 van Beijnum, F. et al. Surface Plasmon Lasing Observed in Metal Hole Arrays. Physical Review Letters 110, 206802 (2013).
    96 Müller, J. et al. Gain analysis of blue nitride-based lasers by small signal modulation. Applied Physics Letters 96, 131105 (2010).
    97 Gather, M. C., Meerholz, K., Danz, N. & Leosson, K. Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer. Nat Photon 4, 457-461 (2010).
    98 Ning, C. Z. Semiconductor nanolasers. physica status solidi (b) 247, 774-788 (2010).
    99 Shan, W. et al. Optical properties of In[sub x]Ga[sub 1−x]N alloys grown by metalorganic chemical vapor deposition. Journal of Applied Physics 84, 4452 (1998).
    100 Shu-Wei, C. & Shun Lien, C. Fundamental Formulation for Plasmonic Nanolasers. Quantum Electronics, IEEE Journal of 45, 1014-1023 (2009).
    101 Li, D. B. & Ning, C. Z. Peculiar features of confinement factors in a metal-semiconductor waveguide. Applied Physics Letters 96, 181109 (2010).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE