研究生: |
魏晨祐 Wei, Chen-Yo |
---|---|
論文名稱: |
高效率低能隙高分子太陽能電池之研究 : 以電子傳輸層改質提升元件效率 Studies on High Performance Low Bandgap Polymer Solar Cell Through Modifications of Electron Transport Layer |
指導教授: |
陳壽安
Chen, Show-An |
口試委員: |
郭欽湊
Guo, Qin-Cou 任慈浩 Jen, Tzu-Hao |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 106 |
中文關鍵詞: | 高效率 、高分子太陽能電池 、電子傳輸層 、低能隙 |
外文關鍵詞: | High Performance, Polymer Solar Cell, Electron Transport Layer, Low Bandgap |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾年來,由於人類對替代能源的重視,因此高分子太陽能電池的發展成為一個很重要的課題。對於高分子太陽能電池而言,其電子傳輸層的載子遷移速度與能階的匹配皆會影響整個太陽能電池的效率。也因此,本研究探討電子傳輸層對以低能隙高分子PTB7-Th 混摻PC71BM為活性層之太陽能電池其效率的影響。
在電子傳輸層方面,本研究分別以兩種分式去提升電子傳輸層的載子遷移速度及電子收集能力,第一個方式將1,4,5,8-Napthalenetetracarboxdiimide (NDI)、3,4,9,10-Perylenetetracarboxylic Diimide (PDI) 等小分子加入金屬氧化物電子傳輸層,提高電子傳輸層薄膜的電子遷移速度,另一方法是將金屬氧化物與具有界面偶極的高分子製作成bilayer之電子傳輸層,降低金屬氧化物與活性層接觸時載子復合的問題,使電子較易從活性層傳遞至陰極,其中bilayer之電子傳輸層對於元件表現較為優異,使得元件效率提升至10.78%。在以金屬奈米粒子摻雜到電子傳輸層方面,本研究選擇以30nm 粒徑之金奈米粒子觸發表面電漿共振效應,提高周遭的光場,增加活性層的吸光量,短路電流高達20 mA/cm2 ,效率突破11%。
在第二部分,以slot die 塗布1*5 cm2大面積PEDOT薄膜取代傳統spin coating 的塗布方式,解決spin coating 塗布大面積時膜厚不均勻的問題,且slot die塗布有另一個相較於spin coating的優勢,適合大面積且連續製程,為再來太陽能電池的趨勢。
Recent years, it has come to the public’s awareness to find an alternative energy source to decrease the amount of carbon emission, in hopes of solving the issue of climate change; therefore, the development of polymer solar cells (PSC) has become an important task. To achieve a high efficiency for PSC, the characteristics of the electron transport layer (ETL) plays an important role; hence, this study investigates the effects of different ETL characteristics on the efficiency of low band gap PTB7-th:PC71BM polymer solar cells.
This study enhances the efficiency of the PSC through the increase of electron mobility and electron capture of the electron transport layer. The first configuration was through the blending of 1,4,5,8-Napthalenetetracarboxdiimide (NDI) and 3,4,9,10-Perylenetetracarboxylic Diimide (PDI) into the oxidized-metallic electron transport layer, increasing the electron mobility of the layer. The second configuration was introducing a bilayer to the oxidized-metallic electron transport layer, lowering the recombination problem which often happen at the interface of oxidized-metallic electron transport layer and the active layer, which results in an easier transportation of electron from active layer to the cathode layer. Of these two configurations, the introduction of the bilayer to the ETL has resulted in an increase of PSC’s power conversion efficiency (PCE) to 10.78%. Building on this configuration, this study further blended 30 nm gold particle into the electron transport layer, taking advantage of the surface plasmonic effect of the gold nanoparticles, reaching a current of 20 mA/cm2 and a PCE exceeding 11%.
Other than the ETL, this study also investigated the techniques of slot die, producing a 1 cm * 5 cm larger scale PEDOT PSCs, to replace the conventional spin coating, in hopes of solving the problem of uneven layer surface when producing larger PSCs. Furthermore, slot die techniques can be beneficial to the industrialization of PSCs.
[1] C. J. Brabec, F. Padinger, J. C. Hummelen, R. A. J. Janssen and N. S. Sariciftci, Synth. Metals, 1999, 102, 861.
[2] S. E. Shaheen, R. Radspinner, N. Peyghambarian and G. E. Jabbour, Appl. Phys. Lett., 2001, 79, 2996.
[3] C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, Adv. Funct. Mater.,2001,11,15.
[4] H. Hoppe, N. S. Sariciftci, J. Mater. Chem. 2006, 16, 45.
[5] X. Yang and J. Loos, Macromolecules 2007, 40, 1353.
[6] G. Li, V. Shrotriya, Y. Yao, Y. Yang, J. Appl. Phys. 2005, 98, 043704.
[7] D. Chirvase, J. Parisi, J. CHummelen and V. Dyakonov, Nonotechnology 2004, 15, 1317.
[8] V. D. Mihailetchi, L. J. A. Koster, P. W. M. Blom, Appl. Phys. Lett. 2004, 85, 970.
[9] C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T.
Rispens, L. Sanchez, and J. C. Hummelen, Adv. Funct. Mater. 2001, 11, 374.
[10] M. Knupfer, Appl. Phys. A 2003, 77, 623.
[11] K. L. Shaklee, R. E. Nahory, Phys. Rev. Lett. 1970, 24, 942.
[12] T. J. Savenije, J. M. Warman and A. Goossens, Chem. Phys. Lett. 1998, 287, 148.
[13] J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti and A. B. Holmes, Appl. Phys. Lett. 1996, 68, 3120.
[14] M. Theander, A. Yartsev, D. Zigmantas, V. Sundström, W. Mammo, M. R. Andersson and O. Ingänas, Phy. Rev. B, 2000, 61, 12957.
[15] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudi, Science 1992, 258, 1474.
[16]C. Duan, F. Huang, Y. Cao, J. Mater. Chem., 2012, 22, 10416.
[17]H. J. Son, B. Carsten, I. H. Jung, L. Yu, Energy Environ. Sci., 2012, 5, 8158
[18]H. Zhou, L. Yang, W. You, Macromolecules 2012, 45, 607.
[19] K. M. Coakley and M. D. McGehee, Chem. Mater. 2004, 16, 4533.
[20] C. W. Tang, Appl. Phys. Lett. 1986, 48, 183.
[21] H. Hoppe and N. S. Sariciftci, Adv. Polym. Sci. 2008, 214,1
[22] G. Yu, J. Gao, J. C. Hummelen, F. Wudi, A. J. Heeger, Science 1995, 270,1789.
[23] W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, Adv. Funct. Mater. 2005, 15, 1617.
[24] G. Li, V. Shrotriya, Y. Yao, Y. Yang, J. Appl. Phys. 2005, 98, 43704.
[25] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat. Mater. 2005, 4, 864.
[26] X. Guo, M. Zhang, J. Tan, S. Zhang, L. Huo, W. Hu, Y. Li, J. Hou, Adv. Mater. 2012, 24, 6536.
[27] A. J. Moulé, K. Meerholz, Adv. Mater. 2008, 20, 240
[28] J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, G. C. Bazan, Nat. Mater. 2007, 6, 497.
[29] J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J. Y. Kim, K. Lee,
[30]Y. Liang, Y. Wu, D. Feng, S. T. Tsai, H. J. Son, G. Li, L. Yu, J. Am. Chem. Soc., 2009, 131, 56.
[31]Y. Liang, D. Feng, Y. Wu, S. T. Tsai, G. Li, C. Ray, L. Yu, J. Am. Chem. Soc., 2009, 131, 7792.
[32]W. J. Feast, P. W. Lövenich, H. Puschmann, C. Taliani, Chem. Commun., 2001, 505.
[33]S. A. Chen, C. C. Tsai, Macromolecules 1993, 26, 2234.
[34]Y. Liang, Z. Xu, J. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, Adv. Mater., 2010, 22, E135.
[35]J. M. Szarko, J. Guo, Y. Liang, B. Lee, B. S. Rolczynski, J. Strzalka, T. Xu, S. Loser, T. J. Marks, Luping Yu, L. X. Chen, Adv. Mater., 2010, 22, 5468.
[36] S. A. Chen, S. H. Liao, H. J. Jhuo, Y. S. Cheng, Adv. Mater., 2013, 25, 4766-4771
[37] Y. Cao, Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang, Thomas P. Russell, NATURE PHOTONICS, 2015, 9
[38] Y. Kim, S. Nam, J. Seo, S. Woo, W. H. Kim, H. Kim, Donal D.C. Bradley, Nature Communication, 2015, 6, 8929
[39] Alex K.-Y. Jen, J. Huang, J. H. Carpenter, C. Z. Li, J. S. Yu, Harald Ade, Adv. Mater., 2015, 28, 967-974
[40]Jiang Huang, Xiaohua Zhang, Ding Zheng, Kangrong Yan, Chang-Zhi Li, Junsheng Yu, Sol. RRL, 2017, 1, 1600008
[41] J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, A. J. Heeger, Adv. Mater. 2006, 18, 572.
[42] C. Lao, C. P. Wong, Z. L. Wang, Nano Lett. 2007, 7, 1323.
[43] J. Gilot, I. Barbu, M. M. Wienk, R. A. J. Janssen, Appl. Phys. Lett. 2007, 91, 113520.
[44]H.-L. Yip and A. K. Y. Jen, Energy Environ. Sci., 2012, 5, 5994–6011.
[45]A. Manor, E. A. Katz, T. Tromholt and F. C. Krebs, Sol. Energy Mater. Sol. Cells, 2012, 98, 491–493.
[46]M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis and D. S. Ginley, Appl. Phys. Lett., 2006, 89, 143517.
[47]T. Yang, W. Cai, D. Qin, E. Wang, L. Lan, X. Gong, J. Peng and Y. Cao, J. Phys. Chem. C, 2010, 114, 6849–6853.
[48]S. Schumann, R. Da Campo, B. Illy, A. C. Cruickshank, M. A. McLachlan, M. P. Ryan, D. J. Riley, D. W. McComb and T. S. Jones, J. Mater. Chem., 2011, 21, 2381–2386.
[49]J.-P. Liu, K.-L. Choy and X.-H. Hou, J. Mater. Chem., 2011, 21, 1966–1969.
[50]J.-C. Wang, W.-T. Weng, M.-Y. Tsai, M.-K. Lee, S.-F. Horng, T.-P. Perng, C.-C. Kei, C.-C. Yu and H.-F. Meng, J. Mater. Chem., 2010, 20, 862–866.
[51] J. Sun, Y. Zhu, X. Xu, L. Lan, L. Zhang, P. Cai, J. Chen, J. Peng and Y. Cao, J. Phys. Chem. C, 2012, 116, 14188–14198.
[52] S.-H. Liao, H.-J. Jhuo, Y.-S. Cheng, S.-A. Chen, Adv. Mater. 2013, 25, 4766.
[53] S.-H. Liao, H.-J. Jhuo, P. -N. Yeh, Y.-S. Cheng, Y. –H. Lee, Sunil Sharma, S. -A. Chen, Scientific Reports, 2014, 4, 6813
[54] C.-H. Hsieh, Y,-J. Cheng, P.-J. Li, C.-H. Chen, M. Dubosc, R.-M. Liang, C.-S. Hsu, J. Am. Chem. Soc. 2010, 132, 4887
[55] Z. He, C. Zhong, X. Huang, W.-Y. Wong, H. Wu, L. Chen, S. S, Y. Cao, Adv. Mater. 2011, 23, 4636.
[56] Z. He, C. Zhong, S. Su, M. Xu, H. Wu, Y. Cao, Nature Photonics, 2012, 6 ,190
[57] P. Li, G. Wang, L. Cai, B. Ding, D. Zhou, Y. Hu, Y. Zhang, J. Ziang, K. Wan, L. Chen, K. Alamrh, Q. Song, Phys. Chem. Chem. Phys, 2014, 16, 23792-23799
[58] Sungho Nam, Jooyeok Seo, Shungho Woo, Wook Hyun Kim, Hwajeong Kim, Donal D. C. Bardley and Youngkyoo Kim,Nature Communications, 2015, 6, 8929
[59] 曾賢德, 物理雙月刊,32眷2期
[60] H. A. Atwater, A. Polman, Nature Materials, 2010, 9, 2629
[61] J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. Chen, C. H. Kuo, M. H. Huang, C. S. Hsu, ACS NANO, 2011, 5, 959-967
[62]K. Kawano, R. Pacios, D. Poplavskyy, J. Nelson, D. D. C.Bradley and J. R. Durrant, Sol. Energy Mater. Sol. Cells,2006, 90, 3520–3530.
[63] M. P. de Jong, L. J. van Ijzendoorn and M. J. A. de Voigt, Appl. Phys. Lett., 2000, 77, 2255–2257.
[64] K. W. Wong, H. L. Yip, Y. Luo, K. Y. Wong, W. M. Lau, K. H. Low, H. F. Chow, Z. Q. Gao, W. L. Yeung and C. C. Chang, Appl. Phys. Lett., 2002, 80, 2788–2790.
[65] Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter and A. J. Heeger, Adv. Mater., 2011, 23, 1679–1683.
[66]H. Cao, W. He, Y. Mao, X. Lin, K. Ishikawa, J. H. Dickerson and W. P. Hess, J. Power Sources, 2014, 264, 168–183.
[67]S. K. Hau, H.-L. Yip and A. K. Y. Jen, Polym. Rev., 2010, 50, 474–510.
[68]F. Zhang, X. Xu, W. Tang, J. Zhang, Z. Zhuo, J. Wang, J. Wang, Z. Xu and Y. Wang, Sol. Energy Mater. Sol. Cells, 2011, 95, 1785–1799.
[69]M. Jorgensen, K. Norrman, S. A. Gevorgyan, T. Tromholt, B. Andreasen and F. C. Krebs, Adv. Mater., 2012, 24, 580–612.
[70]R. R. Sondergaard, M. Ho¨sel and F. C. Krebs, J. Polym. Sci., Part B:Polym. Phys., 2013, 51, 16–34.